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ABSTRACT 

Quality of Service (QoS) is the overall performance of a computer network, 

particularly the performance seen by the users of the network. By managing the delay, 

bandwidth, and packet loss parameters, it allows us to allocate our available resources 

between applications in a reasonable way. In today's life, it is general that many 

applications run at the same time. As a critical type of resource, bandwidth would be 

shared without principle which leads to interference. Therefore, “important” 

applications cannot get enough bandwidth to transmit data. To solve these problems, 

the end-to-end bandwidth resource allocation scheme is proposed to support Quality of 

Service (QoS) for various types of traffic based on the user QoS demand.  

The main goal of this system is to provide high QoS performance for high 

priority flows. In order to meet this goal, this system considers the flow priority and the 

dynamic characteristics of the network. In addition, feasible paths are calculated for all 

the traffic flows that can satisfy the user bandwidth demands. In order to mitigate the 

flow performance degradation and congestion, the controller checks the link 

bandwidths by reserving the required bandwidths for incoming flows. If the link 

bandwidth is smaller than the predefined threshold value, the link is defined as the 

bottleneck link and reroute the highest priority flow from the bottleneck link to an 

alternative link that has enough bandwidth for the rerouting flow. Furthermore, to 

improve the performance and to ensure the QoS of the high priority flows, a queue 

mechanism is used which is provided by the OpenFlow at the data link level. This 

research will try to accommodate as much traffic as possible, and study the effect of 

routing on a rather general mix of QoS traffic types. 

The effectiveness of the proposed scheme is described on the emulated SDN 

network. The proposed scheme is compared with the conventional shortest path 

scheme, multipath routing scheme in the various network topology. Furthermore, the 

performance of the proposed scheme is compared with the popular flow scheduling 

scheme Hedera in the data center network topology. The improvement of QoS traffic 

type is quantified in terms of throughput, delay, jitter and packet loss rate, respectively. 

Based on the experiments, the researcher observed that the proposed method 

(QoS_based Traffic Engineering Approach) QT offers a significant improvement 

compared to a static, traditional IP network and the multipath network environment by 
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providing better performance in terms of packet loss rate for the QoS traffics and great 

improvement in link utilization.   
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CHAPTER 1 

INTRODUCTION  

With the rapid growth of network technologies, the development of the domain 

is shifting from providing connectivity to providing a number of services and 

applications with desirable quality and reliability. These applications and services have 

different service features and their own quality demand. For example, telephony services 

like VoIP need extremely bandwidth and delay-sensitive. The packet needs to reach its 

destination before a specific delay threshold, otherwise, the service becomes useless for 

the VoIP transmissions. Furthermore, the retransmission of lost packets is also worthless 

for real-time applications. On the other hand, the data transfer applications like File 

Transfer Protocol (FTP) services are more robust in packet loss than real-time 

applications. Therefore, implementing a QoS-enable network becomes a very hard 

challenge and it requires a significant effort to provide accessible performance for all 

traffic types. In general, network providers offer Service-Level Agreements (SLAs) with 

guarantees on different network performance metrics such as bandwidth and delay. 

SLAs express the availability of the network function with percentage and provide the 

required quality assurance of applications such as delay and/or packet loss.  

Quality of Service (QoS) is defined by Cisco [104] as “the capability of a 

network to provide better service to selected network traffic over various technologies 

with the primary goal to provide priority including dedicated bandwidth, controlled jitter 

and latency, and improved loss characteristics.” QoS deals with providing end-to-end 

guarantees to the users. There are many ways in which such assurances can be obtained. 

One can use one or any combinations of these technologies to implement QoS. A 

network operating system may exploit various services like resource reservation and 

allocation, prioritized scheduling, queue management, routing, etc. 

The traditional network was not initially designed with QoS in mind, it was later 

supplemented by many techniques to achieve the desired performance tuning. These 

techniques allowed the Internet Service Providers (ISP) to fine-tune the internet as 

required. However, the traditional internet is facing new challenges with every new 

emerging technology. The increasing number of devices, the growing volume and 

velocity of traffic, big data and cloud computing are some of the problems that the 

traditional internet is finding hard to cater to. 
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Software Defined Networking (SDN) provides a solution to these challenges by 

making the internet flexible and programmable. SDN [97] is an emerging architecture 

that may play a critical role in future network architectures. SDN can provide a global 

network view of the network resources and their performance indicators such as link 

utilization and the network congestion level. The main idea of SDN is to separate the 

network intelligence from the forwarding device and logically place it in the external 

entity which is called the controller. OpenFlow protocol (OF) [71] is used to exchange 

data between controller and forwarding devices in SDN architecture. In the data plane, 

the simple packet forwarding elements match the incoming flows in the flow table and 

apply the specified action on the matching flows. The control plane lies above the data 

plane, and this is where all the routing decisions are made. Once a decision is reached 

for a “family” of flow, it is updated to all the flow tables, thus saving time for subsequent 

flows. In other words, the networking decisions are now taken in software rather than 

hardware. Due to its flexibility and responsive to rapid changes, SDN is proper for an 

emerging technology like 5G and cloud data center network.  

As more and more vendors are accepting SDN as the new networking paradigm, 

the demands on SDN is changing with time. One of the biggest advantages of SDN is 

its vendor-agnostic and open-source nature which has led to rapid acceptance and 

involvement of research communities worldwide, both in academia as well as the 

industry. The primary solution that SDN provided over the traditional internet was that 

of flexibility and programmability. This means that, for SDN to be deployed on the 

worldwide internet, it needs to support fine-grained QoS, equivalent to what is possible 

in the traditional internet, if not better. By having strong QoS control included in SDN, 

the future Internet might have native QoS support. 

This chapter highlights prominent research challenges in SDN and presents the 

objectives of the present research along with a description of the research structure.  The 

remainder of this chapter is organized as follows. Section 1.1 introduces the problem 

statement in SDN. The motivation of the research is highlighted in section 1.2. In section 

1.3, the objectives of the research are presented. Section 1.4 describes the research 

contributions. The organization of this thesis is presented in section 1.5. 
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1.1 Problem Statement 

According to the traditional single-path routing scheme, all of the traffic shares 

the same link and compete over the network link bandwidth. Congestion happens when 

the traffic load exceeds the network link bandwidth, and it can seriously impact on the 

Quality of Service (QoS) parameters of the applications. For example, when the network 

faced packet loss as a consequence of congestion, the packet transmission rate 

drastically reduced which may negatively influence the quality of the provided services 

and lowers the network throughput. On the other hand, there may be more than a single 

path to reach a particular destination, and some paths may be underutilized. Suitable 

path selection from among the multiple paths to optimize the overall network 

performance is one of the critical issues in the network area. However, the routing 

behavior in traditional networks is rather static and cannot be altered programmatically 

on short notice. This makes it practically impossible to react to changing traffic 

characteristics.  

Another major challenge is the dynamic link bandwidth allocation with 

congestion management that can support the QoS requirements for each traffic and 

improve the service degradation for high priority flows. Hence, increasing the 

bandwidth would not solve the problem. The reason for the losses can be found in the 

burst nature of the network traffic which causes congestion when multiple traffics flows 

transmitted on the same link produce high peaks simultaneously. 

One more challenge of the current network architecture is to provide the 

satisfaction of network users (customers). From the network operator point of view, the 

network operator needs to use the available network resources and make sure the 

negotiated SLAs are still met.   

From the above problem statements, the following questions for this research 

work can be gathered: 

 How to provide bandwidth guarantee to QoS flow? 

 How to improve the link utilization in SDN? 

 How to steer the traffic to reduce network congestion while adhering to 

constraints given by QoS parameters for different service types? 

It should be noted that these research questions are closely related to each other and all 

of them have the same destination. The main idea behind these research questions is 
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providing a performance guarantee for the high priority network traffic by supporting 

network resources according to their QoS demands and the current network status.  

1.2 Motivation of the Research 

The Quality of Service (QoS) demand for network applications is increasingly 

fast with global Internet traffic growing year per year. Providing higher bandwidth is 

just not enough because many of the applications not only have bandwidth requirements, 

but also require other QoS guarantees, such as end-to-end delay, jitter, or packet loss 

probability.  

The traditional network architecture was designed to provide Best Effort (BE) 

service only. Therefore, it is not easy to provide a guarantee for requiring QoS 

performance in current traditional networks. In the last decades, the Internet Engineering 

Task Force (IETF) [81] has proposed two major QoS control architectures, i.e.: 

Integrated Service (IntServ) and Differentiated Service (DiffServ. The former one, 

IntServ [14] provides a way to deliver the end-to-end QoS solution. It uses bandwidth 

reservation and admission control at each network element. The IntServ uses a resource 

reservation system to ensures the portion of bandwidth reserved in every link for a 

particular flow. However, the Resource Reservation Protocol (RSVP) is not fit for a 

large network like the Internet due to its scalability problem. RSVP requires a periodic 

reservation-state refresh. In a large network with RSVP, each network component needs 

to store flow states, and it grows rapidly with the increasing number of flows and 

network components. Following, the reserved bandwidth can only be used by the 

reserving flow which may cause low bandwidth utilization in the network. On the other 

hand, the complexity of DiffServ [12] is significantly lower than IntServ and it works 

per-hop behavior (PHB) with aggregation for different classes of traffic. However, there 

are no QoS guarantees in this architecture since bandwidth is shared among flows. Both 

of these QoS control architectures have not been very successful or implemented on a 

wide scale since they need some fundamental changes in the current network design.  

In order to provide QoS guarantees for a specific application, the traditional 

internet is facing a challenge to use network resources efficiently in allocating network 

traffic to limited network bandwidth. In traditional network, network resource allocation 

is partially implemented in the network components such as routers, switches, and links 

inside the network and partially in the transport protocol running on the end hosts. The 
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implementation is not isolated to one single level of a protocol hierarchy. Therefore, 

resource allocation and congestion control are known as complex issues in traditional 

network.  

SDN has been approached by many researchers in these days to overcome the 

current Best-Effort limitations explained above. Hence, SDN can provide a global 

network view of the network resources and their performance indicators such as link 

utilization and the network congestion level which can help in network resource 

allocation. Leveraging the advantage of centralized control in SDN, network-wide 

monitoring, and flow-level scheduling can be used to achieve high QoS for network 

applications and services such as voice over IP, video conferencing and online gaming. 

By using the benefits of SDN, the controller makes the routing decision based on the 

global view of the network resources in the SDN network. 

In general, network providers optimize their network performance in order to 

effectively fulfill as many customer demands as possible with traffic engineering (TE) 

[1]. An important goal of TE is to use the available network resources more efficiently 

for different types of load patterns in order to provide a better and more reliable service 

to customers. The traditional network architectures are not well-suited for developing 

sophisticated TE systems because they miss a set of desired properties. No entity in the 

network is able to easily collect statistical information from all network devices and to 

aggregate them to form a global view of the network which would allow a TE 

application to understand the current network situation and simplify the computation of 

routing paths.  

Routing is a powerful tool of TE and it allows for controlling network data flows. 

The aim of TE routing is to route as many demands as possible by reserving the amount 

of bandwidth resources for each established route. For each traffic flow, the routing 

scheme needs to select a route between its source and destination along which sufficient 

resources are reserved to meet its require QoS. Generally, the main function of routing 

is to find the best path to reduce network congestion and improve the quality of service 

(QoS).  

While QoS in SDN is still an area of research, it would not be wrong to believe 

that achieving them on SDN would be far easier than it was on the traditional internet 

considering its programmable nature. In very little time, SDN technology rapidly 
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developed and improved with the birth of a lot of independent projects working in 

different areas of SDN. 

1.3 Objectives of the Research 

This thesis aims to provide high performance of different network traffic by 

giving network resources to it according to their QoS demands and the current network 

status. The proposed system uses an OpenFlow network architecture which provides the 

ability to improve the link utilization while providing the requires bandwidth resources 

and less packet loss rate as the QoS factor in the overall network. 

In order to achieve this, the research work is divided into the following distinct 

objectives.  

1. To provide bandwidth guarantee to QoS flow by applying characteristics and 

advantages of SDN technologies 

2. To propose the resource allocation scheme as a small part of QoS-based traffic 

engineering for SDN-based Network 

3. To improve the link utilization while providing the required bandwidth resources 

4. To reduce the packet loss rate of QoS flows and provide better performance 

1.4 Contributions of the Research 

In this research, the QoS demand approach is considered for end-to-end dynamic 

network bandwidth resource allocation in the SDN network by taking account into the 

QoS flow priority and the dynamic characteristics of the network link. The goal is to 

improve the QoS performance of the high priority flow while providing the required 

bandwidth resources and less packet loss rate as the QoS factor in the overall network. 

There are three research contributions that have been assumed as a hierarchical 

level to create a QoS capable SDN network in this thesis which are summarized in the 

following: 

 Proposing an end-to-end dynamic bandwidth resource allocation procedure 

based on TE in SDN to support the QoS requirements of different types of 

network traffic flows. The QoS guarantee is provided in both controller and data 

link level. Firstly, an admission process is performed to make sure that the QoS 

flows get enough bandwidth at the controller level. Then, the proposed system 
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uses the queue mechanism provided by the OpenFlow in the data link level to 

improve the performance and to ensure the QoS of the high priority flow. 

 Implementing QoS routing for different types of QoS traffic class by taking 

advantage of SDN technology. The calculation of the feasible path for all traffic 

can satisfy the user demand bandwidth. Compare the difference routing 

strategies and showed (by simulation) that the QoS routing gives a substantial 

gain in all performance metrics, and was better than traditional and multipath 

routing. 

 Implementing Congestion handling to handle the network congestion in case. To 

mitigate the flow performance degradation, detect the link bandwidth by 

reserving the required bandwidth for the incoming flow. If the link bandwidth 

satisfies the predefined threshold value, the proposed system defined it as the 

bottleneck link and reroute the highest priority flow from the bottleneck link to 

an alternated link that has enough bandwidth for the rerouting flow. 

1.5 Organization of the Research 

The structure of the dissertation is described as follows: 

 Chapter 1 provides an introduction to the research. It presents a brief background 

and motivation behind the research and then presents the research questions 

addressed in this dissertation. 

 Chapter 2 briefly introduces the SDN technologies and related research areas 

and then reviews the relevant literature. 

 Chapter 3 presents the State of the Art of SDN and the required technologies 

background for implementing QoS in the SDN environment. 

 Chapter 4 presents end-to-end QoS including the origin, progress, and challenges 

faced in SDN. 

 Chapter 5 explains the architecture and internal details of the various 

components of the SDN framework that would be used in this dissertation.  

 Chapter 6 presents the implementation of the proposed system and essential parts 

of the developed SDN application to give the reader an understanding of how 

the platform operates. 
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 Chapter 7 presents the various experiments conducted in this dissertation. It 

presents the statement of the experiment followed by its implementation, results, 

and observations. 

 Chapter 8 concludes with the challenges faced and contributions made in this 

research. It ends with a discussion on future work in this direction. 
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CHAPTER 2 

LITERATURE REVIEW AND RELATED WORK 

This chapter presents the traditional network, the SDN network with its 

application area, and the traffic engineering domain problems exposed in the existing 

SDN architecture. The first section presents the traditional network’s components and 

its challenges. The second section covers a brief overview of SDN and its advantages 

over the traditional network. The third section starts with a focus on the application areas 

of SDN. Finally, the last section reviews the related research studies and its current 

work. 

2.1 Traditional Network  

Ethernet switch is one of the most commonly used network elements to serve as 

the network connection point for hosts in Local Area Networks (LANs). It uses hardware 

addresses, MAC addresses, to forward the frame at the data link layer of the (Open 

Systems Interconnection) OSI model. The switch operates at the data link layer of the 

OSI model to create a separate collision domain of every switch interface. Each network 

element connected to a switch interface can transmit and receive the data 

simultaneously.  

The switch forwards data frames based on the Media Access Control (MAC) 

table. When a frame arrives at a switch, the switch will put the source MAC address and 

correspond incoming interface number in the MAC table as the basis for forwarding new 

frames. Then the destination MAC address will be inspected. If a switch not having an 

entry for the destination MAC address in its table, it floods all of its interfaces with a 

broadcast message requesting the location of the MAC address. Each connected switch 

relays this broadcast message to all of its neighbors until eventually a switch replies. 

This reply is traced back to the original switch that initially requested the location of the 

MAC address and MAC tables are updated by each switch along the way to reflect the 

newly discovered MAC address.  

If the destination MAC address is a multicast address or unknown unicast, it will 

forward the frame to all the interfaces except the incoming interface. Otherwise, the 

frame will be forwarded to the specific interface according to the MAC table. When the 
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switch floods a frame to the network, it may create the traffic loop in the network whose 

topology consists of loops. To solve this, the legacy switch usually uses a spanning tree 

protocol that blocks some interfaces so that the resulting logical LAN topology is a tree. 

Through the spanning tree protocol, traffic loops can be prevented. 

2.1.1 Challenges of Traditional Networks 

 Mobile devices and their contents, cloud computing, and virtualization, have 

highlighted the need for a new network architecture that the industry is trying to satisfy. 

This change was necessary because the old network architecture was based on hierarchy, 

which was built on tiers of Ethernet switches arranged in a tree structure. This kind of 

architecture was unsuitable for nowadays dynamic computing and storage needs of 

enterprise data centers, campuses and carrier environments are not satisfied. All this is 

a challenge for traditional networks. 

Traditional networks were static in nature and were manually configured based 

on service requests. Thus will make it challenging to control the network in both their 

management and their operation. Traditional networking functions are mainly 

implemented in dedicated networking devices such as switches, routers, and application 

delivery controllers. As for network management, networking devices have to be 

configured on a per-device basis using vendor-specific proprietary interfaces. While 

network administrators need to define high-level policies and apply them over the whole 

network, these interfaces only allow low-level configuration of individual devices. And 

although tools for centralized management exist, they serve rather for monitoring of the 

network than for its configuration as a whole. 

Concerning network operation, typical networking devices use routing protocols 

to fill their forwarding tables, but may also allow for network administrators to manually 

configure additional rules. These rules may, for example, provide application port 

filtering or different treatment for particular quality-of-service classes. Unfortunately, 

there is no protocol to automatically distribute these more complex policies over the 

network [29]. 

With packet forwarding based only on destination addresses or statically defined 

rules, the network cannot react to the dynamics of the traffic or to the occurring 

abnormalities. Be it peak loads, applications with high demands for Quality of Service, 

or applications requiring high bandwidth, with the static setting, the network has no 
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instruments to appropriately utilize its resources unless equipped with specialized 

devices like load balancers. 

To be fitted for demands of modern deployments, in both campuses and data 

centers, a network should provide means for automation, so it could react to occurring 

events on its own and efficiently use available resources while ensuring resilience. Such 

a network should also be virtualized in order to provide a high-level abstraction for 

convenient management of the network regardless of the underlying physical layer and 

its specifics [29]. 

Software-defined networking, further described in the next session, is assured to 

bring a solution to the various problems networking is facing today. 

2.2  Software-Defined Networking  

A new networking architecture called Software-Defined Networking (SDN) 

emerged in the early 2010s. The essence of SDN is changing the way of the network to 

change the way of creating and managing the network. The main characteristic of the 

SDN architecture is that decoupling the control plane and data plan and abstracting from 

each other. A consequence of this decoupling is lead to greater flexibility in network 

management. Since networking devices such as switches and routers simply act as the 

data plane’s forwarding devices, the controller at the control plane centrally controls the 

devices by determining the forwarding rules according to the network condition. Unlike 

traditional traffic management, instead of managing network traffic at the per-hop level 

from one host to the next, SDN works with the flow level from source to destination. 

The controller determines the path and reserves the resources from source to destination 

when a flow is admitted. This design leads to global views and management of network 

traffic, which makes it possible to coordinate QoS guarantees and forwarding decisions 

at larger scales. Overall, SDN makes network management much simpler by providing 

dynamic reconfiguration of network devices in the data plane and by centralizing flow 

coordination in a network to minimize resource contention. 

2.2.1 Differences between Traditional Networking and SDN 

In the traditional network model, the control plane and the data plane are bundled 

inside the networking devices. The data plane tells the incoming traffic where it needs 
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to go. The location of the control plane is particularly inconvenient because 

administrators do not have easy access to dictate the traffic flow. 

 

 

Figure 2.1 Architecture of Traditional Network and SDN Network 

In the SDN network model, SDN breaks the vertical integration of the control 

plane and data plane by separating the network’s control logic from the underlying 

routers and switches that forward the traffic. As a consequence, network switches 

become simple forwarding devices and the control logic is implemented in a logically 

centralized controller simplifying policy enforcement and network configuration. Figure 

2.1 depicted the comparison of traditional network and SDN network architecture. Three 

main differences between traditional networking and SDN architecture are as follows: 

 SDN controller has a northbound interface to communicate with applications 

through application programming interfaces (APIs). This allows application 

developers to program the network directly while traditional networking works 

through using protocols [46]. 

 To establish connections and run properly, traditional networking relies on 

physical infrastructure.  Meanwhile, SDN is a software-based network, which 

allows the network users to control virtual-level network resource allocation via 

the control plane and to determine network paths and proactively configure 

network services.  

 In traditional networking, the control plane is located in a switch or router, which 

is particularly inconvenient for the administrators to access it to order the traffic 

flow. Compared with the traditional networking, SDN has more ability to 
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communicate with devices throughout the network. SDN offers administrators 

the right to control traffic flow from a centralized user interface and allows 

resources provisioning from a centralized location. It virtualizes the entire 

network and gives users more control over their network capabilities.  

2.2.2 Advantages of SDN 

The rapid development of new trends in networking, such as server 

virtualization, cloud services, a vast diversity of mobile data applications, etc., 

determines the need for new network architectures to manage flexibly with the changing 

environment. The new emerging technology, SDN has several advantages over the 

traditional network. The most common specific advantages of SDN are as follows:  

 OPEX reduction: centralized control helps to eliminate manual interaction with 

the hardware, improving the uptime of the network. 

 CAPEX reduction: separating the data plane of the control plane brings to 

simpler hardware and increases the possibility of more competence between 

hardware manufacturers since the devices do not depend on the proprietary 

software. 

 Agility: since the control layer can interact constantly with the infrastructure 

layer, the behavior of the network can adapt fast to changes like failures or new 

traffic patterns. 

 Flexibility: having a separated abstraction for the control program allows us to 

express different operator goals, adapting to a specific objective. Operators can 

implement features in the software they control, rather than having to wait for a 

vendor to add it in their proprietary products. 

The particular advantages of SDN will typically vary from network to network, 

however, there are benefits from network abstraction and the agility it offers for network 

administration and automation. The most ideal approach to take advantage of SDN is to 

assess the network components and infrastructure to decide whether SDN can help 

address issues, for example, resource availability, virtualization, and network security. 

The significant advantage of adopting the SDN is the world's largest networks such as 

Facebook, Yahoo, NTT Communication Deutsche Telekom, Microsoft, Google that 

have supported SDN based architecture. 
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2.3 SDN Applications Areas 

Currently, SDN has found a great deal of applicability in a wide range of network 

application areas. SDN provides the opportunities for large scale network like data 

center network with the help of its real-time programmable framework. Moreover, 

mobile operators have also shown intense interest in bringing the technology to 5G/ LTE 

mobile networks to allow simplified yet rapid development and deployment of new 

services. Also, SDN is widely used by social networking websites (Facebook, Twitter, 

Google plus etc.) and large database search engines (Google, Yahoo, Ask etc.). The key 

applications area of SDN and some are highlighted in the following sub-sessions. 

2.3.1 Traffic Engineering 

Traffic engineering (TE) is a key networking area for measuring and managing 

the network traffic, designing reasonable routing mechanisms to guide network traffic 

for improving utilization of network resources, and meeting required quality of service 

(QoS) of the network. Therefore, the path control process through which the traffic is 

handled in TE. There are many reasons why network managers need to influence the 

characteristics of a path, one of them is the use of optimization of network resources. To 

optimize the network resources, network managers must try to avoid the situation of 

certain parts of congestion when others are underutilized. Another important reasons are 

to find the path with certain limitations-constraints that can support the proper 

performance for some high priority flows. For example, the path for the delay-sensitive 

flow like VoIP should not be long delay links. Through this process of TE new services 

are offered with extensive QoS guarantees and investments decline in new network 

resources such as bandwidth, by optimizing the use of existing ones.  

The underlying network architecture is required on today’s internet applications 

to be scalable for a large amount of traffic and to react in real-time. Also, the demand 

that the user has been also growing and the user now wants to be connected with 

everything, constantly. Moreover, each application and services generate their own 

characteristic flow and they shared the overall network bandwidth competitively. 

Therefore, the network architecture should be able to classify a diversity of network 

traffic types from different applications and to provide a suitable and particular service 

for each traffic type in a very short time period. It is not easy to make sure that to 
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efficiently handle and steer all those varieties of traffic types in order to meet their 

specific performance for each specific application. Therefore, new networking 

architectures with more intelligent and efficient TE tools are urgently needed. 

 

 

Figure 2.2 Traffic Engineering Architecture in SDN 

Figure 2.2 illustrates the abstract view of TE architecture in the SDN network. 

Compared with the traditional networks, the TE mechanism in SDN can be much more 

efficient and intelligently implemented due to its distinguishing characteristics. More 

specifically, SDN provides the concept of decoupling between control and forwarding 

plane, the programmability of network behavior, and global centralized control.  

 

 

Figure 2.3 The components of Traffic Engineering 

Figure 2.3 illustrates the components of TE. The TE technology based on the 

SDN comprises two portions: traffic measurement and traffic management [1]. The goal 
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of the traffic measurement is to studies the monitoring, measuring, and acquiring the 

SDN network’s status information in the SDN network. The information includes the 

status of current topology connection, ports (down or up), various types of packet 

counters, the counters of the dropped packets, ratios link bandwidths utilization, end-to-

end traffic matrices and end-to-end network latency so on. For avoiding network 

congestions and improving network efficiency, the network status information can be 

used in validating whether the current network status is current by the administrator and 

predicting the future traffic trend by analyzing packet counters statistics. 

Network management mainly studies how to maintain network availability and 

how to improve network performance. Network traffic scheduling is an important way 

to improve QoS performance for the different application traffic. In general, SDN has 

multiple paths between the source and the destination node, which can be used for traffic 

scheduling. The controller maintains the global view of the current status of each path 

in the network using various network measurement technologies mentioned above. 

Consequently, the network administrator can design a traffic scheduling algorithm to 

dynamically plan data forwarding paths to meet users’ requirements.  

2.3.2 Network Resource Optimization 

Network resource optimization can involve a number of specific optimization 

goals, including traffic reduction, blocking reduction, latency reduction, and load 

balancing. Some of these goals are not exclusive and are closely linked; for example, 

reducing traffic in the network often results in a reduction in blocking, due to there being 

additional capacity available within the network for further traffic. However, there are 

also other ways to reduce blocking within the network, such as spreading the load across 

the network in a load balancing approach. These close links between optimization goals 

are important, as they provide insights into multiple solutions to larger optimization 

problems. These types of problems often require using multi-objective optimization 

techniques, in order to achieve the best solution possible. This is because multi-objective 

optimization allows for a far wider search of solution parameters than normal 

optimization techniques. 

With the existing optimization goals in mind, it should be clear that each 

characteristic being improved could benefit specific scenarios; furthermore, it is 

important to tailor optimization techniques to the application being utilized on the 
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network. For example, delay-tolerant content delivery would not benefit significantly 

from latency reduction, but the reduction in traffic would provide improved scalability 

due to additional capacity being available for further demands. In addition to this, a 

reduction in traffic would also reduce transmission costs for any links where cost is 

linked to usage. 

2.3.3 Data Centers and Cloud Environments  

Compared with the small scales network, the requirements of TE and policy 

implementation are really high in the case of large scales network architecture like a 

datacenter. Generally, increasing network latency and persistent troubleshooting may 

result not only in undesirable end-user experience but also in substantial effects on the 

cost penalties for the operators. Due to the significant feature of centralized control 

framework, the implementation of Datacenter (DC) in SDN can provide the fine-grain 

network management which makes easier for the network operators to monitor and 

manage hundreds of network element.  For example, Google described four generations 

of their datacenter networks by using SDN technology in 2015. SDN tied a connection 

between its geographically distributed data centers from all over the world [42]. 

The implementation of SDN in the cloud computing environment delivers a 

solution for powerful TE to increase service scalability and automated network 

provisioning.  Microsoft public cloud [57] and NTT's software-defined edge gateway 

automation system [53]  are the distinguished examples of SDN deployment in a cloud 

computing environment. 

From the perspective of cloud operators, energy consumption becomes the 

biggest issue for reducing operational costs and expands. In [32], the authors tried to 

reduce energy consumption by switching off redundant switches from the controller side 

during low traffic demand.  

2.3.4 Campus and High-Speed Networks  

The heterogeneous networking technologies integration with a centralized 

controller and OpenFlow enabled network elements has seen a great deal of applicability 

in optical high-speed networking. Customer needs for the SDN framework for enterprise 

networks are urgent due to the diversity of network traffic patterns that require proactive 

management to adjust network policies and fine-tune performance. Using centralized 
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real-time programmability of SDN, the network may eliminate middleboxes which 

provide services such as NAT, firewalls, access control and service differentiation 

solutions and load balancers [51].   

For achieving programmability for the greater network,  SDN application, and 

high speed and campus networking controlled with OpenFlow continue to grow 

resulting in new as well as hybrid solutions. SDN provides a centralized control plane 

to effectively monitor the network resources utilization. 

2.3.5 Residential Networks 

As the number and heterogeneity of network elements connected to the Internet 

continuously growing, the network in the customer’s house has become a critical factor 

to manage network operations and meet the end-user expectations. SDN provides an 

ability to manage residential and small office home networks. SDN provides a 

centralized control plane to effectively monitoring network resource utilization. SDN 

offers a great opportunity of effective monitoring for network usage visibility to network 

operators and residential users via the [15], [38]. 

Using the SDN controller, Dillon and Winters [21] proposed the introduction of 

virtual residential gateways to allow providers remote management flexibility in 

delivering service to homes. For fine-tuning and troubleshooting the residential network, 

an SDN controller controlled and managed remotely the residential router or gateway 

from the service provider site [21], [25], [16].  

Some contrasting schemes propose giving users more control and incorporating 

SDN based monitoring in the residential environment to change network policies [21] 

[64] [75]. From a security point of view, it has been argued that an SDN based anomaly 

detection system in a residential SDN environment provides higher scalability and more 

accuracy than intrusion detection systems deployed at the side of internet service 

provider [49].  Feamster in [27], proposed totally outsourcing residential network 

security utilizing programmable network switches at the customer sites to allow remote 

management.  By employing the outsourced technical expertise, management and 

running of tasks such as software updates and updating anti-virus utilities may be done 

more effectively as the external operator also has a wider view of network activity and 

emerging threat vectors. The privacy of end-users where technical operations related to 

residential network management are outsourced also requires consideration [52]. SDN 
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framework for residential networking remains an active area of industry and academic 

research. 

2.3.6 Wireless Communications 

The SDN paradigm has been ported to mobile communication networks because 

of the real-time programmability and potential to introduce new applications and 

services to consumers. A programmable wireless data plane allowed developers to fine-

tune mobile communications performance by offering routing based on flexible MAC 

and physical address in comparison to the traffic forwarding based on layer 3 logical 

address[44]. There have been growing efforts to include the SDN layering model in the 

upcoming 5G mobile communication. There is an opportunity to offer a more modular 

control and traffic forwarding framework with the use of SDN, user traffic can be 

separated and routed over different protocols. Similar to information-centric 

networking, an efficient network resource management scheme is needed to provide 

maximum utilization network slicing, and guaranteeing fairness among several QoS 

classes [67]. 

Using SDN to maximize energy efficiency in 5G networking has, therefore, been 

the subject of investigation in several studies.  SDN has also been test-implemented in 

5G to allow rapid application service provisioning while adhering to stringent QoS 

requirements.  At the more local level such as Wi-Fi access networks, SDN could be 

used to offer a great deal of ubiquity in connecting to different wireless infrastructures 

belonging to different providers using user device identity management which is in turn 

coordinated and proactively managed by the SDN controller. 

2.4 Research Challenges 

This section discusses the major research advances made in several SDN areas 

in detail. With the growth of network applications in the SDN framework, the 

highlighted areas of research challenges going from application performance to security 

in the present SDN architecture. Most of these research provided one or other form of 

achieving QoS. 
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2.4.1 Application Performance 

The improvement of application performance has been the primary area of focus 

in a number of SDN related studies ranging from application-aware SDNs, utilizing the 

framework for optimizing time-critical applications to the development of novel 

application performance monitoring solutions. The following sub-sections discuss the 

studies carried out in this regard. 

2.4.1.1 Application-awareness in SDN 

Application-awareness in SDN infrastructure considers the benefits of the SDN 

framework to compromise greater performance for particular applications. The 

southbound APIs like OpenFlow is capable of Layer-2/3/4 based policy enforcement 

but shortage to provide high-level application awareness. Therefore, network 

management primitives are employed which alter the traffic forwarding policies for 

individual applications and the SDN controller translates these into device configuration 

using a southbound API such as OpenFlow. The concentration in this area has seen 

several studies on video streaming (YouTube, P2P video, etc.)  and voice 

communications (VoIP), using the SDN architecture to improve the individual 

application quality of service.  

In one such ‘application-aware’ SDN work, Mekky et. al [50]  proposes a per-

application flow metering approach using the SDN framework. Applications are 

identified in the data plane and applied the appropriate policies according to the 

individual application tables.  The proposed scheme minimizes the SDN control channel 

overhead.  The study showed significant improvement in application forwarding 

performance with low overhead. 

2.4.1.2 Application Performance Monitoring 

With the recent developments of virtualization technologies, a wide range of 

applications are hosted on multiple servers in datacenter and cloud environments. To 

improve the performance of applications in such area requires the development of a tool 

which can monitor the application traffic in virtual platforms and apply traffic 

management policies. In this domain, SDN is seen as a key enabling technology due to 

the decoupling of control logic from forwarding elements.   
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For large scale network performance analysis, Liu G. and Wood T.  [19] 

presented a platform called NetAlytics which uses network function virtualization 

(NFV) technology to deploy software-based flow monitors in the network. The system 

aimed to analyze application performance and application popularity by collecting 

network traffic statistics.  

For cloud-based data centers, Maan et. al [47] developed a network monitoring 

system to monitor network flows at the edge of the network. The work proposed a 

scalable network monitoring utility called EMC2 to be used for performance evaluation 

of switch flow accounting methods. The evaluation recommends NetFlow [105] which 

can provide network handling ability with minimal use of computing resources to 

monitor application traffic in virtual environments and cloud-based data centers. 

2.4.1.3 Video Streaming and Real-time Communication 

Focusing on video streaming applications, Egilmez et. al [22], devised an 

analytical framework for traffic optimization at the control layer while offering dynamic 

and enhanced Quality of Service (QoS). The study reported significant improvement for 

the streaming of encoded videos under several coding configurations and congestion 

scenarios.   

Jarschel et.  al [35] instead focused specifically on improving YouTube 

streaming experience for end-users.  The study used Deep Packet Inspection (DPI) and 

demonstrated how application detection along with application state information can be 

used to enhance Quality of Experience (QoE) and improve resource management in 

SDN.  

CastFlow [48] was another example of video streaming optimization, which 

proposed a prototype aimed at decreasing latency for IPTV using a multicast approach, 

logically centralized and based on OpenFlow networks.  During multicast group set all 

possible routes are calculated in advance to reduce the delay in processing multicast 

group events (joining and leaving hosts and source changes). Using Mininet based 

emulation, the reported results showed satisfactory performance gains and the time to 

process group events appeared to be greatly reduced.   

Noghani and Sunay [54], also utilized the SDN framework in allowing the 

controller not only to forward IP multicast between the video streaming source and 

destination subscribers but also to manage the distributed set of sources where multiple 
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description coded (MDC) video is available. For medium to heavy loads, the SDN based 

streaming multicast framework resulted in enhanced quality of received videos. Some 

related studies try to verify the importance that the underlying testbeds may have on any 

evaluations reporting perceived improvements in video streaming quality using SDN.   

Panwaree et.  al in [56], showed the benchmark of the packet delay and latency 

performance of videos which were tested on both Mininet environment and actual 

physical PC clusters using Open vSwitch. It was noted that the packet delay and loss in 

the PC-cluster testbed were higher than the Mininet emulated testbed suggesting a 

careful interpretation of performance expectations in realistic environments.  

2.4.2 Data Center Solutions and Resource Allocation 

Traffic measurements in data centers show signification variation in network 

workload hosting multiple applications on the same physical or virtual network fabric 

[83].  The SDN paradigm brings automation and on-demand resource allocation in data 

center networking [97] [4].  Using SDN, the DC environment can afford faster state 

changes, a fundamental necessity of modern data centers [42].  Several prior works have 

discussed the improvement of individual applications and services in the DC network 

environment.  

Application connectivity models were used in [10] and [43] to allocate per-

application network bandwidth.  However, application delivery constraints are prevalent 

in data centers where virtual machines from several applications may be simultaneously 

competing for resources.  To address bandwidth allocation, Kumar et.  al [42] employed 

user-space daemons running on application servers to predict anticipated traffic and 

assigning forwarding paths to applications using operator configured policies.  

Jeyakumar et.  al [36] proposed a weighted bandwidth sharing model among 

nested service endpoints allocating resources hierarchically at core fabric, rack, and 

individual machine level. However, the resulting operator defined per-application 

bandwidth sharing schemes are highly dependent on the stability of application demands 

for long enough periods to optimize network traffic. Fang et. al [24] tried to prevent 

excessive traffic arrival into the network by implementing host congestion controls and 

proposed multipath selection to achieve optimal network resource utilization. 

High-end network vendors propose and recommend the confederation of 

services approach to improve performance [86]. However, the application 
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differentiation available at the system and network-level to assign machine limits and 

create end-to-end network topology per application does not explicitly consider user’s 

application trends.  Therefore, resource provisioning on a per-application basis leads 

operators to pre-set network provisioning models to improve the end-user experience 

regardless of real-time network conditions. A more user-centric approach where user 

requirements and activities are captured may present a resource abstraction model, 

which could offer service providers the ability to fine-tune network resource share on 

the basis of user traffic classes in view of business and user requirements instead of 

isolated applications.   

2.4.3 QoS Routing and Path Establishment  

A variety of network algorithms can be implemented in SDN including shortest-

path routing, and more sophisticated ones such as traffic engineering [30].  Recently, 

different applications have been implemented in SDN with policy-based access control, 

adaptive traffic monitoring, wide-area traffic engineering, network virtualization, and 

others.  SDN controllers manage the entire network, so they must often change rules on 

multiple switches. 

From the beginning of the networks, communication is decided based on the 

Shortest Path First (SPF) routing algorithms. In today’s network, QoS becomes more 

and more important for a wide range of communication network settings and 

applications. However, because of the limitation of the current SPF-based routing 

algorithm, network link congestion often occurs even when the total load is not 

particularly high. This is challenging for multimedia applications that require certain 

QoS [4] levels for appropriate functioning. Generally, the route computation is either 

carried out in distributed nodes which can Internet Protocol (IP) routers or by a 

centralized controller. The main goal of the Shortest Path (SP) problems is to minimize 

a unique end-to-end QoS metric. Based on the category of the network routing problems, 

there are four types of QoS based routing algorithms [4]:  

•  Shortest Path (SP)  

•  Constrained Shortest Path (CSP)  

•  Multi-Constrained Shortest Path (MCSP)  

•  Multi-Constrained Path (MCP) 
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2.4.4 Congestion Control 

Most congestion control algorithms in the literature are flow-based in general 

and the Transmission Control Protocol (TCP) in particular. TCP is a feedback 

congestion control on flow-level where the transmission rate is based on a sliding 

window. Packets are acknowledged by the receiving side, and when congestion is 

detected by the sender not receiving an acknowledgment before a set time elapse, or 

receiving duplicate acknowledgment, it retransmits the unacknowledged packets [41]. 

In [68], the authors investigate the predictability of self-similar and how this can be used 

in congestion control to improve the throughput of TCP by proposing a feedback 

congestion control, using the throughput as a control variable, and adjusting the 

bandwidth from the client to maximize the throughput.  

Over-demand of network resources can cause congestion which may lead to 

performance degradation when compared to states with lower demand [31]. It is 

therefore imperative to assume that network resources are sufficient to cater for the 

offered traffic most of the time.  

Some authors highlight the need for more efficient detection of network 

congestion. Huang et al. [34] note that TCP is suboptimal for high-speed networks and 

suggests using free router capacity, ingress aggregate traffic and queue length as 

decision variables to make TCP converge faster and achieve fairness, and Haas and 

Winters [31] suggest probing for congestion with test packets. An alternative algorithm 

to Random Early Detection (RED) using Explicit Congestion Notification (ECN) is 

presented in [26], where packet loss and link utilization are used, rather than queue 

length, to detect congestion. The result is a faster detection of congestion and more 

adequate rate adjustment to mitigate the congestion. 

Using the method classification in [28], this research proposed a congestion 

control scheme that works on hop level and measures flow quality of service, 

disregarding admission control and transport protocol functions. The effect of the end-

to-end performance is studied delay, packet loss and throughput by dynamic traffic 

aggregation at the nodes and optimal routing with respect to delay. A theoretical 

investigation of feedback congestion control strategies can be found in [60]. It discussed 

the differences between feedback from aggregate traffic and individual flows. It is also 

shown, that the transmission rate resulting from a feedback congestion control can be 
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expressed as a fixed-point equation, a technique used in this approach to determine 

optimal routes.  

2.5 Literature Review  

This section covers an existing literature review of traffic engineering and 

resource allocation for SDN based networks.  A lot of real-time business network traffic 

such as instant messages, voice data, and so on, is sensitive to packet losses and delays 

in the transmission process. Thus, an important problem of traffic management is the 

reasonable scheduling of network resources for providing the QoS for business. SDN 

has an open control interface supporting flexible network traffic scheduling strategies, 

which can satisfy different network applications' QoS requirements. Therefore, most of 

the researchers try to design a traffic scheduling algorithm to dynamically plan data 

forwarding paths to meet users' requirements.  

Some research works studied the SDN control framework and flow rerouting 

schemes to provide the end-to-end QoS provisioning.   

In [6], Jaward et al. proposed a policy-based QoS management framework to 

achieve end-to-end QoS with rerouting and rate-limiting.  

In [73], Chenhui et al. proposed a QoS-enable management framework to 

guarantee the QoS of specific flow and employ the queue technique and policy to satisfy 

the requirement of service. Flow rerouting is carried out on the priority flow in order to 

mitigate the impact on best-effort flow.  

Tomovic et al. [65] presented a new QoS based SDN control framework that 

provides the required QoS level for multimedia applications flexibly and automatically. 

They aimed to minimize the best-effort traffic performance degradation. They estimated 

the link utilization by using a threshold value (80% of the link) and rerouted the best-

effort traffic before congestion occurs.   

The equivalence multipath routing technology (ECMP) [77] was proposed as an 

effective load balancing solution. ECMP routing based on a hash algorithm. To make 

hash calculations, the header fields of the packet is extracted whenever the packet arrives 

at a switch or router. Then, one of the forward paths is selected by the hash value. As 

the results, the IP packets with the same head are forwarded along the same path. A key 

limitation of ECMP is that two or more large, long-lived flows can come into collision 

on their hash and end up on the same output port, creating a bottleneck.  
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Therefore, there are many works to complete ECMP by implementing the flow 

detection module and detecting the large flow then schedule these flows along a 

redundant path with a suitable capacity to improve the network performance. 

A dynamic and scalable flow scheduling system, Hedera [5], is for avoiding the 

limitations of ECMP. By periodically pulling the flow statistics, it detects the elephant 

flows at the edge switches. Initially, switches send a new flow via the default flow rules 

with one of its equal-cost paths till the flow size grows and meet the threshold. Then, 

the flow is identified as elephant-flow. It used 10% of the network interface controller 

(NIC) as the default threshold. It has functions such as a global view of routing and 

traffic demands, collection of flow information from switches, computation of non-

conflicting paths for flows, and instructing the switches to re-route traffic accordingly. 

For improving the network performance and scalability DevoFlow [18] was 

proposed by maintaining the flows in the data plane without losing the centralized 

network view. As a result, it decreases the interaction between the data plane and the 

control plane.  It designed wildcards based multipath matching rule. Initially, it forwards 

the traffic with its multi-path wildcard rules. The controller calculates the path with least 

congested when an elephant flow is detected and re-routes the traffic to this path. 

Mahout [17] modified the end-hosts for detecting elephant-flows to overcome 

the problem of high resource overhead by the flow detection mechanisms used in 

Devoflow and Hedera. It used ECMP for routing the normal traffic. The controller 

calculated the best path when an elephant-flow is detected. The controller collects the 

link utilization and elephant-flow statistics from the switches to select the least 

congested path for calculating the best paths. Mahout could faster and lower processing 

overhead in the detection of the elephant-flows while comparing with other methods. 

However, it required the end-hosts modification. 

On the other hand, some works are trying to place flows based on minimum link 

utilization and independent of flow size. In [69], F.P.Tso and D.P.Pezaros introduced 

Baatdaat, measurement-based flow scheduling for reducing congestion in data center 

networks. It used the lightly-utilized paths and allows flow rerouting to schedule traffic 

flows.  

In [11] Benson et al. presented a traffic engineering mechanism for data center 

network called MicroTE, which uses an end-host elephant flow detection to detect the 

elephant flows. MicroTE passively monitors the flow status by flow statistics like the 
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Mahout. It triggers flow aggregation behavior when the flow status is clearly changed, 

For judging the current flow is an elephant flow, it can be predicted relying on the 

difference of the size of the instantaneous flow rate and average flow rate.  It starts the 

routing optimization calculation or deals with it using a heuristic ECMP algorithm when 

it can predict the flow. 

Tootoonchian et al [66] proposed OpenTM which is a traffic matrix estimation 

system for the SDN. It can detect all active network flows according to the flow 

forwarding path information and routing information of the controller. It contains the 

various selective querying methods for routing nodes to receive accurate information of 

the flow evaluation and packets number. 

Furthermore, there are many kinds of solutions that have been proposed to 

guarantee the QoS requirement in the SDN network. OpenFlow supported queue 

scheduling is the most common tool to implement QoS control for individual flow in 

the data plane. It can be used in providing bandwidth guarantees by shaping and 

prioritizing traffic to share the network bandwidth [8]. In [13], Boley et al. developed a 

QoS framework to achieve optimal throughput for all QoS flows with the help of meters’ 

function. In [45], Li et al. implemented a queue scheduling technique used on SDN 

switches to achieve QoS for cloud applications and services.  

Yan et al. [40] proposed HiQoS which is a QoS-guarantee solution in the SDN 

network. To guarantee QoS for the different types of traffic, it identifies multiple paths 

between source and destination nodes by using the queuing. It can increase throughput 

and reduce delays according to its experimental result. It reroutes the traffic from failed 

paths to other available paths for recovering from link failure rapidly. 

OpenQoS was proposed to provide a QoS guarantee for multimedia business 

flows distribution. Since multimedia business flows have different packet heads while 

comparing with other packet heads, it divides all data traffic into two categories, data 

flows and multimedia by using OpenFlow configuration matching rules. It observes the 

forwarding paths performance with packet losses and delays and chooses the best path 

that can meet with the requirements of QoS. By using the original path, it forwards the 

remaining data flows. However, it does not consider the business flows with multiple 

QoS requirements and it only optimizes multimedia flow scheduling. 

In order to provide QoS, the appropriate network resource allocation is needed. 

The knowledge of the current network state is required to make the right decisions with 
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regard to packet forwarding. Therefore, network monitoring plays an important role in 

providing QoS. In [76]  and [70], the researchers developed a monitoring module for the 

controller of the SDN, which can analyze dynamic changes in network flows according 

to messages received by the controller. 

User-reservation based end-to-end dynamic bandwidth allocation scheme was 

proposed in [78] and [80]. Akella et al. [3] studied bandwidth allocation for ensuring the 

end-to-end QoS guarantee of each cloud user based on SDN. Their work emphasized on 

bandwidth allocation with queueing techniques. 

2.6 Chapter Summary  

The majority of studies highlighted in the above discussion included a range of 

network management models ranging from a more ‘application-aware’ SDN paradigm 

to the use of SDN-based QoS routing, including congestion control and SDN based 

monitoring techniques which allow performance measurement and QoS guarantees for 

certain services. It is learned that a wide range of techniques can be used to implement 

QoS-based traffic engineering systems in SDN. To replace the current internet 

architecture, SDN has to come with solutions to a number of problems. Some of them 

have been addressed in the literature review. However, the quality of service capabilities 

of all the different components of SDN will also play a major role in the widespread 

adoption of SDN in the real internet.  

The current work in SDN based traffic optimization focuses on improving the 

quality of individual applications and services such as VoIP or video streaming in 

several different network environments.  Other studies involve information-centric 

networking focused on bringing the data sources closer to the network edge, to again 

improve traffic conditions for the hosted application(s).  However, existing studies do 

not specifically consider that prioritizing specific applications may have on other 

applications in the SDN architecture. 
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CHAPTER 3 

THEORETICAL BACKGROUND 

Software Defined Networking (SDN) is the newly proposed paradigm for 

drastically changing the way the existing networks are working. The basic principle of 

SDN lies on the decoupling of the network control and forwarding planes; then an 

external SDN controller can dynamically inspect rules into SDN capable nodes. Based 

on these rules, the SDN capable nodes perform packet inspection, manipulation, and 

forwarding. In addition, the underlying SDN capable nodes (can be Open flow switches, 

OpenVswitch or Virtual Routers, etc.) can inspect and modify packet headers at different 

levels of the protocol stack, from layer 2 to application layer [97]. 

In the SDN architecture, the control layer has network intelligence and the 

underlying network infrastructure layer and those layers are connected via the APIs. 

Thus, researchers and developers can be able to focus on each layer of the architecture 

without considering the other layer complexities. The main feature of SDN architecture 

is programmability that enables carriers and enterprises to adapt rapidly changing 

business demands in an automated manner and more flexible [92].  

3.1 SDN Reference Architecture 

An SDN consists of three layers: application layer, control layer, and data plane 

layer. A detailed explanation of the key layers is: 

 Data (forwarding) Plane: In a bottom-up fashion, the data plane is the 

forwarding device interconnected through wired or wireless means. The data 

plane's purpose is to forward network traffic as efficiently as possible based on 

a certain set of forwarding rules which are instructed by the control plane. SDN 

architecture removes the forwarding intelligence from the networking hardware 

and moving these functionalities to the control plane. One way traditional 

OpenFlow switches (i.e., the data plane) provide these forwarding properties is 

through Ternary Content-Addressable Memory (TCAM) hardware.  The 

forwarding elements and SDN controller communicate using the southbound 

interface called OpenFlow. At present, the Open Flow protocol [71], serves as a 
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standard southbound communication protocol supported by several vendors 

including the ONF [92] [84]. 

 Control Plane: The SDN control plane, often referred to as the controller, is the 

component that programs and manages forwarding devices over the southbound 

interface. The control plane is responsible for making decisions on how traffic 

would be routed through the network from the source node to destination node 

based on end-user application requirements and communicating the computed 

network policies to the data plane. The controller becomes the centralized brain 

in the network and it works as a network operating system (NOS). An SDN 

controller translates different application requirements such as the need for QoS, 

traffic prioritizing, bandwidth management, etc. into relevant forwarding rules 

which are communicated to data plane network forwarding elements. SDN 

becomes possible to manipulate flow tables in individual elements in real-time 

based on network performance and service requirements by using network 

programmability through the control plane. In brief, the controller gives a clear 

and centralized view of the underlying network giving a powerful network 

management tool to fine-tune network performance. Furthermore, the control 

plane provides the network abstraction that can be used by network applications 

to achieve high-level functionality in the network. 

 Application Plane: The application plane includes network management 

applications such as firewalls, routing, and other applications that enforce the 

policy. An abstract view of the underlying network is presented to applications 

via a controller northbound API. The level of abstraction may include network 

parameters such as throughput, delay, and availability. Applications in return 

request connectivity between end nodes and once the application or network 

services communicate these requirements to the SDN controller, it 

correspondingly configures individual network elements in the data plane for 

efficient traffic forwarding. Centralized management of network elements 

provides additional leverage to administrators giving them vital network 

statistics to adapt service quality and customize network topology as needed 

[51]. For example, during periods of high network utilization certain bandwidth-

consuming services such as large file transfers, video streaming,  etc. can be 

load-balanced over dedicated channels. In other scenarios, such as during an 
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emergency like fire alarms service such as VoIP can take control of the network 

i.e. telephony taking precedence over everything else. Figure 3.1 illustrates a 

simplified scheme for SDN.  

 

Figure 3.1 Simplified SDN Scheme 

3.2 Southbound Interfaces and Protocols  

In order to configure the forwarding in the data plane, an SDN controller needs 

to have a communicating with the forwarding devices. The family of protocols used for 

communicating is called southbound interfaces. There are several well-known 

southbound interfaces, e.g., OpFlex [102], POF [46], ForCES [16], and OpenFlow [88]. 

The leading southbound protocol is OpenFlow, supported by Cisco, HP, Juniper, and 

IBM. Complementing the southbound interfaces, there are southbound protocols such 

as Open vSwitch Database (OVSDB) and OpenFlow Management and Configuration 

Protocol (OF-CONFIG) to control the operations of the forwarding devices (e.g., 

tunneling, shutting down a network port, and queue management) [97]. In this section, 

we review OpenFlow and OVSDB, the southbound interface and protocol used in our 

research. 
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3.2.1 OpenFlow 

The most popular southbound protocol, OpenFlow, was founded at Stanford 

University in 2008, and is currently managed by the Open Networking Foundation 

(ONF) [83] and become. OpenFlow is the communication protocol that allows the SDN 

controller to directly manage the data plane and install forwarding decisions on the 

network devices. The controller can create, remove, and also modify flow table entries 

in the switch using this protocol. The controller deals with the OpenFlow switch via the 

secure channel. The secure channel is one of the interfaces to make the connection from 

each OpenFlow switch to the Controller. This interface is used in managing and 

regulating the switch by the Controller, informing the events via the switch and sending 

packets through it. The interface may vary relying on OpenFlow switch implementation. 

However, standardized OpenFlow protocol is needed in sending each message through 

the secure channel need. 

 

 

Figure 3.2 OpenFlow Architecture 

As illustrated in Figure 3.2, an OpenFlow switch is a software switch that 

consists of one or more pipelined flow tables, a group table, which performs packet 

lookups and forwarding, and an OpenFlow channel to an external controller [71]. The 

flow table is essentially a lookup table with match fields and actions and is processed 
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like a pipeline. Pipelined flow tables contain traffic flows, as defined later. A flow will 

match the first flow table, and potentially be forwarded to a port or another flow table. 

This is what we mean by pipelined; the flow match rules happen iteratively, like water 

flowing through a pipe. 

A traffic flow is a “sequence of packets sent from a particular source to a 

particular unicast, anycast, or multicast destination that the source desires to label as a 

flow” [83]. Flow classifiers are typically based on the 5-tuple consisting of a destination 

address, source address, protocol, destination port, source port. The primary benefit of 

flow-based routing is that it eliminates the need to do lookups to the routing table on a 

per-packet basis. The route lookup can be done for the first packet in a flow, and then 

the same transform applied to each packet in the sequence. Flow tables can easily be 

implemented in hardware, and most vendors support some form of flow matching in 

either software or hardware ternary content-addressable memory (TCAMs) [88]. 

 

 

Figure 3.3 Flow Entry Scheme 

In the SDN model, OpenFlow serves as the data plane handling packet 

forwarding operations for the OpenFlow controller [71]. The flow tables handle packet 

lookups and forwarding. As shown in Figure 3.3, a flow entry consists of header fields 

(e.g., source and destination IP addresses and ports) to uniquely identify each flow, 

counters for collecting the stats of how many times a flow entry is used successfully, 

cookies used for annotation by SDN controller, timeouts that control how long to keep 

a flow entry in the flow table, and priority that helps the switch to choose amongst 

multiple matches (if there are). Lastly, there are actions that determine the policy for 

successfully matched packets. To clarify, when a packet arrives at the switch, the switch 

starts looking for a match and the matched flow entry will determine the action, for 

instance forwarding the packet on a specific port. Upon receiving a packet, a forwarding 
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device scans the flow tables, starting from table 0 (which is the mandatory flow table), 

for matching flow entries. If there is no match in flow table 0, it will start looking for 

the match in flow table 1 (if table 1 exists, the number of flow tables is configured by 

the user). The process will continue until a successful match is found. In the case of 

multiple matches in a single flow table, the entry with the higher priority will be picked. 

The devices perform the action (i.e., forwarding the packet to a specific port) defined in 

the flow entry. There is also a special flow entry called table-miss flow entry with the 

priority of zero that matches all the packets. This entry catches all mismatched flows. 

This entry may direct the device to drop unknown packets or send them to the controller. 

The controller can install a new flow entry on the switches for the flow or can drop the 

packet.  

Think of this as an if-then rule in an L3 (layer 3) router. If the frame matches this 

5-tuple, then we apply this action set. An L3 router is a router which performs 

forwarding decisions based on the L3 Internet Protocol (IP) payload. An L3 packet 

comes in and is sent to the ingress flow table, which is matched by the table-miss flow 

entry. This flow entry will then forward the packet to the controller for a route lookup. 

The controller finds the appropriate next-hop and the proper network interface, and 

pushes a new flow entry to the OpenFlow switch for this packet and forwards it out the 

appropriate interface. The next packet in that flow will match the flow entry that was 

just pushed down into the OpenFlow switch, which will then apply the action to the 

packet forwarding it out the same egress interface the previous packet was sent to and 

applying the same action. Only the first packet in a flow would cause a route lookup, 

speeding up packet processing. [88] 

3.2.2 OpenFlow Flow Table 

The flow table is essentially a lookup table with match fields and actions and is 

processed like a pipeline. When the frame ingresses the port it is processed by Table 0 

by the highest-priority matching flow entry. This flow entry will contain an action set 

which can either output the frame to a specific port, apply actions, or send the frame to 

another table. In the event of a table miss the frame is dropped by the switch. A table 

miss happens when there is no matching rule in the table to match the frame. Each Flow 

Table contains the following fields [71]. Recall that a flow router consists of a lookup 
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table and an action set; this is the lookup table that matches on various fields in the 

packet header. 

Table 3.1 OpenFlow Flow Table Fields 

Type Description 

Match Fields The match criteria for frames. Consists of header data and 

metadata information. Match fields are placed on the flow table in 

order to define the packet to which an action is to be performed. 

This contains the 5-tuple information and some additional criteria 

that can also be used. 

Priority The match priority. Matches occur in priority order. Useful for 

defining exception entries and default entries in the table pipeline. 

Counters Counts the number of matches. 

Instructions Defines what is to be done to the frame after a match; there are 

one or more of these. 

Timeouts Defines how long a flow can exist in the switch. A soft timeout 

defines how long the flow lives if a matching frame has not been 

seen. A hard timeout defines how long a flow lives no matter the 

match count. 

Cookie Controller defined field. This is not used in packet processing but 

is useful for filtering flow statistics. 

3.2.3 OpenFlow Messages Types 

There are three general types of OpenFlow messages: controller-to-switch, 

asynchronous, and symmetric. The controller uses the controller-to-switch messages to 

query information from, transmit packets to, or configure the switch. Normally, the 

controller initiates the controller-to-switch message with or without being required to 

send a response from the switch. On the other hand, asynchronous messages are sent 

without solicitation from the controller. Examples of these include packet-in messages, 

flow-removed, port-status, and packet-out messages. Symmetric messages require a 

response from the receiving party. Examples of these are hello, error, echo, and 

experimenter messages. [71] OpenFlow defines a specification that one can use to talk 
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to OpenFlow switches, and this technology will be utilized throughout this thesis to 

provide the mechanism to insert flows into these switches. 

3.3 SDN Controller for the Control Plane 

In the SDN architecture, the controller works as a brain of the network and it is 

where the control plane resides as depicted in Figure 3.1. A controller is a software that 

serves as a central control point that overlooks the network and through which 

applications can access and manage the network. When the controller is said to be a 

central point of the network, it is only meant to be logically centralized. The controller 

software is typically deployed on a high-performance server machine, but to distribute 

the load or to ensure high availability and resilience, more servers may be involved and 

connected in various topologies [29]. 

The controller is responsible for the following tasks: 

 Device discovery: the controller takes care of the discovery of switches and end-

user devices, and their management. 

 Network topology tracking: the controller investigates the links 

interconnecting devices in the network and keeps a view of the underlying 

resources. 

 Flow management: the controller maintains a database mirroring the flow 

entries configured in the switches it manages. 

 Statistics tracking:  the controller gathers and keeps per-flow statistics from the 

switches. 

It is important to emphasize that the controller does neither control the network 

in any way nor does it replace any networking devices. Even the basic switching or 

routing functionality has to be provided by specific applications that approach the 

network through the controller. Communication with networking devices is realized 

through a southbound interface, for which Open SDN promotes the OpenFlow protocol. 

These interfaces are used to configure and manage the switches and to receive messages 

from them. The connection is realized via a secure channel and depending on the setting 

is either encrypted or unencrypted.  

Applications communicate with the controller using a northbound interface. 

Through this interface, they retrieve information about the network and send their 

requests, while the controller uses it to share information about occurring events. 
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Depending on the implementation, the interface may be low-level, providing unified 

access to individual devices, or high-level, abstracting much of the underlying layer and 

rather presenting the network as a whole. There is no standard for the northbound 

interface and every controller implements its own APIs – be it Java API, Python API, 

REST API [27] or else. This current lack of a standard northbound interface makes it 

difficult to create controller independent applications [29]. 

3.4 Software Switch for the Data Plane 

A summary of command software switches which are also used for 

experimentation and new service development were given in Table 3.2. Detailed 

expression of two well-known software switches presently available is present in the 

below sub-session. 

Table 3.2 Common OpenFlow Software Switches 

 

3.4.1 Open vSwitch 

OpenFlow may be deployed either at the software level or hardware level onto 

forwarding devices in the data plane. More specifically, many well-known networking 

vendors like Cisco, Juniper, IBM, and HP, support OpenFlow, either with a dedicated 

product or running an OpenFlow software switch on top of their switches. Open vSwitch 

is one of the software switches implemented to support OpenFlow which can be installed 

to enable OpenFlow [71]. Open vSwitch is a multilayer software switch that is intended 

to function as a virtual switch. Open vSwitch supports all versions of OpenFlow from 

1.0 to 1.5 as well as GRE tunneling, queues, and so forth. The core of Open vSwitch is 

the switch daemon (ovs-vswitchd). This daemon tracks statistical queries and flow 

management internally on the switch, and also handles communication with external 

devices and services [93]. For management and configuration, in parallel with 
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connectivity to the OpenFlow controller, it is possible to configure and control the Open 

vSwitch via ovs-vsctl and ovs-ofctl. ovs-vsctl is a command line tool to configure ovs-

vswitchd by providing an interface to its configuration database, while ovs-ofctl is a 

command line tool for monitoring and administering Open vSwitch. Moreover, ovsdb-

monitor is a tool to view flow tables and databases of Open vSwitch. As illustrated in 

Figure 3.4, ovsdb-server relies on the OVS Management protocol to communicate with 

Remote Open vSwitch db (a database maintained by Open vSwitch to store its 

information). Unlike flow entries in the switch, the OVSDB configuration is preserved 

even after the switch restarts. 

 

Figure 3.4 Simple Open vSwitch Architecture 

 3.4.2 OfSoftSwitch (CPqD) 

The OfSoftSwitch13 (CPqD) [89] is another switch that is widely used in the 

research community. It is an experimental switch forked from the Ericsson Traffic Lab 

1.1 SoftSwitch implementation with changes in the forwarding plane to support OF1.3 

[37]. The Ofsoftswitch13 is running in the user space and it also supports multiple 

OpenFlow versions [89]. Ofsoftswitch13 supports a variety of OpenFlow features but it 

has recently run into some compatibility issues with the latest versions of Linux (Ubuntu 

14.0 and beyond) and developer support has also stagnated. It comes packaged with the 

following tools to control and manage the data plane: 

 OfDatapath: The switch implementation. 

 OfLib: A library for converting to/from OF1.3 wire formats. 

 DPCTL: Console tool to configure the switch. 
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 OfProtocol: A secure communication channel with the controller. 

All this makes it a complete alternative to the OVS. However, the authors of the 

switch state the following, “Despite the fact the switch is still popular for adventurers 

trying to implement own changes to OpenFlow, support now is on a best-effort basis. 

Currently, there are lots of complaints about performance degradation, broken features, 

and installation problems.”[97]. The switch still has one of the best support for OF1.3 

features among the available soft-switches, specifically the optional features like meter 

tables, etc., which makes it an attractive candidate to get hands-on with. Additionally, 

the soft switch supports a management utility called Data Path Control (Dpctl), to 

directly control the Open Flow switch including the flow addition and deletion, query 

switch statistics and modify flow table configurations.  

3.5 Flow Removal and Eviction 

Flows can be removed from the controller in three ways: at the request of the 

controller, by expiration, or via the switch eviction mechanism. [71] The Flow switch 

expiration mechanism defines a hard and an idle timeout. The idle-timeout causes 

eviction if and only if no frames have been seen for the duration. The hard-timeout 

causes eviction no matter if matches have been seen. The controller can also send a 

DELETE message, causing flow removal. The flow switch eviction mechanism lets the 

switch evict flows in order to reclaim resources. Upon removal, a FLOW REM message 

may be optionally sent if the SEND FLOW REM flag is set in the flow entry. This 

message is used to inform the controller that flow has been evicted so it can either keep 

statistics or make decisions based on this information. 

3.6 Chapter Summary 

This chapter considered the software-defined networking technologies in detail. 

The northbound and southbound communication interfaces allow for several key 

protocols to be used in the SDN framework. Protocols such as OpenFlow on the 

southbound and RESTful API on the northbound controller interfaces have seen 

significant adoption in both academic and industry research. In addition to 

communication protocols, recent years have also seen the development of several key 

controller platforms aimed at furthering the SDN paradigm and bringing substantial 

technical variety for researchers and operators to experiment and explore. 
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CHAPTER 4 

END-TO-END QUALITY OF SERVICE 

Quality of Service (QoS) in SDN is an area of ongoing research and has been 

increasingly becoming interested in the research community. There is no standard or 

formal definition of QoS. But, there are a number of definitions at the communication 

level where the notion originated to describe certain technical characteristics of data 

transmission. In this chapter, the traditional concept of QoS at the network level is 

introduced, and some of the interesting research works are summarized in the area of 

QoS in SDN. Moreover, a taxonomy of the applications and their QoS requirements is 

presented in this chapter. 

4.1 The Quality of Service 

Quality of Service (QoS) is the ability to satisfy the requirement of specific 

traffic. Lots of today's network applications require certain QoS guarantees. For 

example, an application like video streaming requires a small delay but the data 

communication requires less packet loss rate since it is less sensitive to delay. A failure 

to meet this standard might lower the Quality of Experience.  

Standard Internet Protocol (IP)-based networks provide network services based 

on the “best-effort” delivery model. There are no bandwidth or latency guarantees in the 

“best-effort” delivery model since the model offers a point-to-point delivery service to 

deliver data to their destinations as soon as possible. The highest guarantee the network 

provides is reliable data delivery by using protocols, such as TCP. Although this is 

acceptable for traditional applications such as Telnet and FTP, this is inadequate for 

applications requiring timeliness guarantees.  

Increasing bandwidth is a common solution to adequately accommodate real-

time applications like VoIP, but it is still not adequate to sidestep jitter during traffic 

bursts. IP services must be supplemented to provide some appropriate level of quality 

for real-time applications. Typically, this requires extending the network software to 

provide a certain level of quality in potential packet loss, jitter and delay. That is exactly 

what Quality of Service (QoS) protocols are designed to do. Although QoS provides the 

ability to manage bandwidth, it can not create bandwidth. The network administrator 
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can configure the QoS properly and used more effectively to meet the wide range of 

application requirements. The main goal of QoS is to provide some level of 

predictability and control beyond the current IP “best-effort” service. 

4.2 Applications QoS 

At the present time, the key concept of QoS extends from the communication 

level up to the application level, in order to map QoS application requirements into low-

level QoS parameters. So far, QoS has been specified in terms of system resources 

(CPU, memory utilization) or network resources (bandwidth, delay) and the network 

infrastructures have been deployed to support real-time QoS and controlled end-to-end 

delays.  

4.3 QoS Provisioning in Traditional Network 

QoS provisioning over the Internet is essential to ensure high-quality 

performance for different applications. There are two major approaches for supporting 

QoS into IP based network: 

 Resource reservation: Resource reservation is one of the approaches to provide 

per-flow end-to-end QoS guarantee by allocating network bandwidth resources 

to guarantee QoS for a specific flow (e.g., a video streaming session). According 

to an application's QoS request, the network resources are allocated and subject 

to bandwidth management policy. 

 Prioritization: Prioritization is one of the approaches to classify the network 

traffics and allocate network resources according to bandwidth management 

policy criteria. To enable QoS, network elements give preferential treatment to 

classifications identified as having more demanding requirements. 

Even the different applications running on the same distributed system may have 

different QoS requirements with different parameter values. Moreover, some of these 

QoS parameters may be time depending but may not be mutually independent. There 

are a number of different QoS protocols and algorithms to accommodate the need for 

these different types of QoS: 

 ReSerVation Protocol (RSVP) [79]: RSVP is a transport layer protocol which 

can provide the signaling to enable network resource reservation. By using 

RSVP, the receiver initiates network resource reservations by sending a 
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message, and the amount of reservation guarantees the satisfaction of bandwidth, 

timing,  and buffer size constraints. Along the chosen path to the sender, 

reservation is established in a soft state and set aside the required resources. The 

soft state is refreshed periodically by the receiver or else it times out canceling 

the reservation. RSVP typically used on a per-flow basis and also used to reserve 

resources for aggregates.  

 Differentiated Services (DiffServ) [12]: DiffServ was developed to provide a 

coarse and simple way to categorize and prioritize network traffic flow 

aggregates. As a first step, DiffServ classifies all flows into a limited number of 

classes and define a different “per-hop behavior” for each class. To define per-

hop behaviors, it takes 6 bits from the Type-of-Service (TOS) field in the IP 

header. Then, a certain profile of traffic is created by the clients and pay it to the 

network provider. Client packets are marked by the edge routers. When the 

packets arrive at the core router, the core router will know what to do by seeing 

the 6-bit per-hop behavior code from the IP header. 

 Multi-Protocol Labeling Switching (MPLS) [58]: MPLS is data forwarding 

technology that provides bandwidth management for flow aggregates via 

network routing control according to labels in packet headers.  

 Subnet Bandwidth Management (SBM) [74]: SBM is a signaling scheme that 

enables categorization and prioritization at the data link layer (Layer 2) on shared 

and switched IEEE 802 networks. 

4.4 QoS Provisioning in Software-Defined Networking  

Despite the effectiveness of QoS-guarantee provided by IntServ and DiffServ, 

the QoS guarantee remains a challenge on a large scale. This challenge fundamentally 

conceptualizes to resource management and traffic directing. The current Internet 

architecture is based on distributed networking protocols running on network elements 

(e.g., routers and switches). The use of distributed protocols and coordination of changes 

in conventional networks remains incredibly complex to configure and policy on the 

underlying network hardware to enable multiple services from traffic routing and 

switching. Keeping the state of several network devices and updating policies becomes 

extra challenging when increasingly sophisticated policies are implemented through a 

constrained set of low-level configuration commands on commodity networking 
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hardware. As a result, frequently misconfigurations such as changing traffic conditions 

require repeated manual interventions to reconfigure the network, however, the tools 

available might not be sophisticated enough to provide enough granularity and 

automation to achieve optimal configurations. 

4.5 QoS Support in Different Versions of OpenFlow  

OpenFlow has supported the notion of QoS since the beginning. However, 

support has been limited. As new versions of OpenFlow arrived over the years, each 

new release of OpenFlow brought new features or updated existing ones. In this 

subsection, we summarize what changes each OpenFlow specification made regarding 

the QoS features. The earliest versions of OpenFlow OF1.0 - OF1.1 supported queues 

with minimum rates. OF1.2+ started supporting queues with both minimum and 

maximum rates. OpenFlow queues have broad support across the board. Most of the 

popular software switch implementations (e.g., OVS and CPqD OfSoftSwitch) and 

many hardware vendors (e.g., HP 2920 and Pica8 P-3290) support OpenFlow queues.  

Table 4.1 QoS Related Features in Different OpenFlow Versions 

OpenFlow Specific Features 

1.0 Enqueue action, minimum rate property for queues and new header 

fields 

1.1 More control over VLA and MPLS 

1.2 Maximum rate property for queues and controller query queues from 

switches 

1.3 Introducing the meter table, rate-limiting and rate monitoring feature 

1.4 Introducing several monitoring features 

1.5 Replacing meter action to meter instruction 

OF1.3 introduced the concept of meter tables to achieve more fine-grained QoS 

in OpenFlow networks. While queues control the egress rate of the traffic, meter tables 

can be used for rate-monitoring of the traffic prior to output. In other words, queues 

control the egress rate and meter tables can be used to control the ingress rate of traffic. 

This makes queues and meter tables complementary to each other. OpenFlow switches 

also have the ability to read and write the Type of Service (ToS) bits in the IP header. It 

is a field that can be used to match a packet in a flow entry. All these features collectively 
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enable the network administrator to implement QoS in their networks. The following 

Table 4.1 summarizes the QoS related features in OpenFlow versions. 

4.5.1 Queues 

As mentioned earlier, the OpenFlow protocol described a minimum rate-limiting 

queue in OF1.0 and a minimum and maximum rate-limiting queue in OF1.2. According 

to the OpenFlow specification, OpenFlow uses queues on switches but does not handle 

the queue management on switches. The management of queues on the switches happens 

outside of the OF protocol, and the OF protocol itself can only query the queue statistics 

from the switch. There are two protocols to provide the queue management task 

(creation, deletion, and alterations) in OpenFlow-enabled switches: OF-Config and 

OVSDB. Besides, there is standard queue management provided by any OpenFlow 

controller [93].  

4.5.2 OVSDB 

OF-Config and OVSDB are two southbound protocols to control the operations 

of the forwarding devices other than the forwarding decisions. In particular, OVSDB 

manages switch operations like tunneling, switch port status, queue configuration, and 

QoS management [93]. OVSDB uses many tables to manage the Open vSwitch. These 

tables include the flow tables, port tables, NetFlow tables, and others. Similarly, it 

maintains tables for QoS and Queues. While most of the other tables are root-set tables 

of the OVSDB schema, i.e., the table and its entries are not automatically deleted if it 

cannot be reached. Thus the QoS and the queue tables exist and can be altered 

independently, whether or not they are referenced by a port. The port table is related to 

a QoS table and an interface table. The relation with the interface table is mandatory, 

meaning that each port has to be associated with an interface. The relationship with QoS, 

however, is optional. A port may exist without a QoS setting attached to it. A port can 

have a QoS table which may have multiple queues assigned to it. 

Once the QoS and queues have been set up on a switch, flows can be directed to 

a particular queue using the OpenFlow set queue action. This action will forward the 

flows that match the matching criteria to the mentioned queue. If more than one flow 

goes through the switch at the same time, the aggregate rate of the flows will be 

controlled at the egress according to the defined min rate and max rate by the queue. Let 
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us dive a little deeper into how the queues are implemented in the OpenFlow protocol 

and OVS. 

The OpenFlow specification [71] states the following properties about queues: 

 min rate: The guaranteed minimum data rate for a queue. The capacity is shared 

proportionally based on each queue min rate. Once the min rate is set, the switch 

will prioritize the queue to achieve the stated minimum rate. If there is more than 

one queue in one port, with a total min rate higher than the capacity of the link, 

the rates of all those queues are penalized.  

 max rate: The possible maximum data rate allowed for a queue. If the actual 

rate of flows is more than the stated queue’s max rate, the switch will delay 

packets or drop them to satisfy the max rate. 

While OpenFlow specifications mention these guidelines for the OpenFlow 

compatible switches, it is left to the switch implementation to realize these features. The 

Open vSwitch, which is based on Linux, uses the Linux Kernel's Traffic Control (TC) 

program to implement queues. 

4.5.3 Linux Traffic Control 

Linux Traffic Control (TC) is a Linux utility used to configure traffic control in 

the Linux Kernel. TC can be used to achieve the following in the Linux kernel: 

 Traffic Shaping: It can be used to shape the transmission rate of the traffic going 

through a Linux server or any other device. It can also smooth out any bursts of 

traffic for better network behavior. 

 Scheduling: By scheduling the packets, it is possible to achieve better network 

behavior during bulk transfers. Reordering and scheduling of packets can also 

be called prioritizing, which is a widely accepted phenomenon in QoS. 

 Policing: Several network policies can be implemented in TC. This policing 

occurs at ingress. 

 Dropping: Traffic exceeding the defined bandwidth can also be dropped either 

at ingress or egress, based on usage. 

TC uses three types of objects to achieve this: Queuing Discipline (Qdisc), 

classes and filters. Whenever the kernel needs to send any traffic to an interface, it 

enqueues the traffic into a qdisc. Which is then sent to the interface by the qdisc later. A 

simple qdisc is a simple FIFO queue. Classes and filters are used to implement more 
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sophisticated queuing disciplines like the classful and the classless queueing disciplines. 

In OVS, there are two classful queuing disciplines, they are Hierarchical Token Bucket 

(HTB) [9] and Hierarchical Fair Service Curve (HFSC) [63]. Both of these queuing 

disciplines allow Hierarchical Queuing Disciplines and bandwidth borrowing. 

Therefore, HTB will be used in this thesis for queue management. 

4.5.4 Hierarchical Token Bucket (HTB) 

Generally, the hierarchical token bucket (HTB) is a queuing discipline which is 

intended to be a replacement for Class-Based Queuing (CBQ), a standard in older TC 

implementations. To allow granular control over the outbound bandwidth on a given 

link, HTB uses the concepts of multilevel token buckets. In the HTB algorithm, tokens 

are generated at a fixed rate and stored in a fixed capacity bucket. If there is an available 

token in the bucket, packets can be dequeued or sent to an output port. Within an HTB 

instance, multiple classes may exist.  

 

 

 

 

 

 

 

 

 

Figure 4.1 Sample HTB Class Hierarchy  

Figure 4.1 demonstrates a simple HTB hierarchy for solving the following 

problem: 

“Two customers A and B are connected to the internet via the same connection. 

We need to allocate 40Kbps and 60 Kbps to A and B respectively. As bandwidth needs 

to be subdivided into 30Kbps for WWW and 10Kbps for other applications. Any unused 

bandwidth should be shared among the two customers.” [91]  

In this example, 40Kbps is assigned to A. If A’s bandwidth usage for WWW is 

less than the allocated bandwidth, the unused bandwidth will be used for other traffic if 

Main Link 

Link A Link B 

WWW SMTP 
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demanded. The sum of A’s WWW and other traffic will not exceed 40Kbps. If A were 

to request less than 40 kbps in total, then the excess would be given to B. However, only 

two levels of hierarchy can employment in OpenFlow Queue implementation because a 

child class of a root cannot have any children. The common important properties of HTB 

classes are as follow: 

 rate: It is the maximum guaranteed rate for this class and its children. It is 

equivalent to a Committed Information Rate (CIR). 

 ceil rate: It is the maximum rate at which this class is allowed to send. 

 priority: It defines the priority of the class where the class with higher priority 

(priority 0 has the highest priority) is offered idle bandwidth first. This 

prioritization should not affect other classes' guaranteed rate. 

In OVS, the ovs-vsctl command is used to create queues. This command creates 

an entry in OVSDB and then implements it in the switch using Linux TC. An example 

of creating QoS and queues in an OVS port is shown below: 

 

Figure 4.2 Queue Implementation Example 

Figure 4.2, shows how to create the example QoS and queues in port eth1 of 

switch s1. It is shown as new entries in the Queue table and QoS table in OVSDB. Then,  

OVSDB puts a relation between the newly created QoS entry and entry eth1 in Port 

table. Consequently, eth1 should behave according to rules stated in this QoS. The 

switch invokes the TC application during this process to create qdisc and classes in the 

background. 

4.5.5 Meter Tables 

The meter table is a new feature that was introduced in the OpenFlow protocol 

in OF1.3. Unlike queues which are used to control the egress rate, meter tables are used 
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to monitor the ingress rate of the flows [85]. A meter table contains meter entries, 

defining per-flow meters. Meters are associated with flows rather than ports. Flow 

entries can specify meters in its instruction; the meter controls the aggregate rate of all 

the flow entries associated with it. Per-flow meters enable OpenFlow to implement 

different QoS techniques such as rate-limiting. It can be combined with per-port queues 

to implement complex QoS frameworks like DiffServ.  

Each flow that is attached to a meter is required to pass through the meter and 

meter bands before it gets forwarded. The meter measures the rate of each flow that 

passes through, giving options to impose operations based on rates with the help of 

Meters Bands. 

A flow is not required to attach to a meter entry, it is up to the developer to 

specify which flows, or type of flows that should be attached to a meter entry and passed 

through the meters. A flow can also go through multiple meters. It cannot be attached to 

multiple meters at the same time, but it can be used in succession. This is done through 

different meter entries in different flow tables.  

A meter table entry consists of the following components: 

 Meter Identifier: It is a 32-bit unsigned integer identifier which is used by the 

flows to uniquely identify which meter entry it belongs to. 

 Meter Band: It is the meter that measures the rate of each incoming attached 

flow, but it is the Meter band that hold the instructions and executes the 

operations based on the measured rate of the flows. Each Meter band contains 

the instructions to process the associated packets on what to do when a flow 

reaches a set rate. The meter band applies actions when the flow-rate is greater 

than the set rate of the meter. [85] 

 Counters: It is a simple counter that is updated every time a packet is processed 

by a meter. It is mainly for statistical purposes. 

A meter can define multiple meter bands, although the only one-meter band may 

be applied each time the packet passes through the meter. In cases where a meter has 

multiple Meter bands defined, only the Meter band with the highest set rate still being 

below the current measured flow rate is applied. In cases where the flow-rate is lower 

than any Meter band rates configured, no actions will be applied. 

There are two band types to define how a packet would be processed; these are 

drop and dscp remark. Bands effect on the traffic that exceeds the defined rate. The drop 
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band drops the packets that exceed the rate specified in the band's rate. It can be used to 

define a rate-limiting band. The DSCP remark band, on the other hand, is used to 

increase the drop precedence of the DSCP field in the IP header. It can be used to 

implement DiffServ.  

4.6 QoS in SDN Controllers 

Several OpenFlow controllers provide additional tools and platforms to help 

users with queue configuration. Here, four well-known open-source OpenFlow 

controllers are described with a review of their QoS support [39]. 

 Floodlight [94], maintained by Big Switch Networks, is a well-known open-

source SDN controller in the Java programming language. For queue 

configuration and management, a QoS module [72] is built on top of Floodlight 

as a community module which takes advantage of OpenFlow 1.0 queue support. 

Another module developed is QueuePusher [55]. It controls queue configuration 

and management using the Floodlight API [39]. 

 Ryu [96] is a component-based SDN controller implemented in the Python 

programming language. One of the main advantages of Ryu, unlike many other 

SDN controllers, is that it supports all OpenFlow versions from 1.0 to 1.5. 

Moreover, because of its component-based design and full OpenFlow version 

support, it is often used for the fast prototyping of an SDN module. Ryu provides 

an API to configure and manage queues in Open vSwitch using OVSDB. 

 OpenDaylight (ODL) [95] is a Linux Foundation collaborative open source 

project with the goal of promoting SDN. Many of the proprietary SDN 

controllers like the Brocade SDN controller are based on ODL. Similar to Ryu, 

ODL also has an OVSDB plugin that helps users with queue configuration and 

management [39]. 

 Open Network Operating System (ONOS) [90] is a community open-source 

project hosted by Linux Foundation with the goal of creating a highly scalable, 

highly available, and high-performance SDN operating system. Currently, 

ONOS supports metering in OpenFlow. However, unlike the aforementioned 

SDN controllers, ONOS QoS support lacks many features and is not fully 

complete [39]. 
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The following Table 4.2 summarizes the QoS related features in 

OpenFlow controllers. 

Table 4.2 QoS Related Features in Different OpenFlow Controllers 

Controller Features and Modules 

Floodlight QoS module, QueuePusher module  

Ryu OVSDB API 

OpenDayLight OVSDB API 

ONOS OpenFlow Metering (limited QoS support) 

 

In the experiment, the Ryu controller is chosen, mainly due to its component-

based architecture, the powerful northbound API, and excellent documentation for QoS. 

This choice is further justified in Chapter 6. 

4.7 Chapter Summary 

This section presented the notion of QoS including origin and progress. It is 

learned that the various type of techniques can be used to implement QoS systems in 

SDN, various challenges faced by the SDN community and suggested possible solutions 

to some of the most pressing issues.  

The emerging of various network services carried by the Internet, competing for 

the network resource and most of which require QoS performance guarantees. It is 

difficult to deliver the newly emerging network services in a flexible way and to fulfill 

the huge amount of demand with better performance in a current network. To solve these 

problems, traffic engineering schemes need to consider the mix of user applications, and 

the performance requirements the end-users may experience as a consequence of 

individual service improvement.  

SDN aims to address the problem of flexibility in the present-day internet 

architecture and provides a software-driven approach for new techniques and protocols 

to thrive in its ecosystem. The biggest advantage of SDN is that it is easier to adapt to it 

and move away from the existing “rigid” internet setup. But, for SDN to replace the 

current architecture of the real-world network, it needs to provide very fine-grained 

control to the network administrators to control the quality of services along with several 

other enhancements. 
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CHAPTER 5 

END-TO-END DYNAMIC BANDWIDTH RESOURCE 

ALLOCATION BASED ON QOS DEMAND IN SDN 

SDN and QoS themselves are just concepts. A number of technologies, 

techniques, and applications have to work together to realize them. All the different parts 

of the puzzle have to fit together to create an SDN network with QoS capabilities. In 

this chapter, the resource allocation scheme is proposed to support Quality of Service 

(QoS) for various types of traffic while maintaining the network link utilization as much 

as high. The architecture of a resource allocation scheme based on Software Defined 

Networking (SDN) is presented that integrates the proposed scheme to provide better 

performance.  

5.1 Architecture of Proposed Resource Allocation Scheme 

In this section, the overall architecture of the proposed resource allocation 

scheme based on SDN is described in Figure 5.1.  

 

Figure 5.1 Architecture of Proposed Resource Allocation System 

The system includes five main modules: topology discovery module, network 

monitoring module, Delay Estimation module, QoS routing module, and Congestion 
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Handling module. Each module has its own functions and they are linked with each 

other in the proposed scheme. Below we will explain the workflows of the proposed 

system modules individually. 

5.1.1 Topology Discovery Module  

This module is used to discover the SDN switches connected to the controller 

and have knowledge of the links between them to calculate a route for the network 

connection. The route cannot contract without discovering the information about the 

network links, hosts and switches in the network. Furthermore, keeping up-to-date 

visibility of the topology is a critical function. The network topology changes whenever 

the switches leave and join the network. Consequently, it may affect routing decisions 

that the controller has to make continuously. 

In OpenFlow-based SDN, after an OpenFlow switch joins to the network, it 

establishes a TCP connection with the SDN controller. Afterward, the SDN controller 

requests the switch for its active ports and their respective MAC addresses using the 

OFTP_FEATURE_REQUEST message. The switch replies with an 

OFTP_FEATURE_REPLY message containing the requested information which is 

needed for topology discovery. Although there is no specific standard for discovering 

the topology of an OpenFlow-based SDN, most SDN controllers’ implementations 

follow the OFDP protocol relying on LLDP packets [62]. Therefore, the topology 

discovery module firstly sent out the Link Layer Discovery Protocol (LLDP) packets to 

all the connected switches through packet_out messages to acquire topology and 

connection information. After that, the messages instruct the connected switches to send 

LLDP packet_out messages overall its ports to other connected devices. Then this 

message would be delivered to the controller as packet_in messages since the switch 

does not have a flow entry for this LLDP message. These packet_in messages contain 

information about the switch’s port that the specific host connects to. SDN controller 

creates a connection based on these packet_in messages. In this way, global topology 

information can be gained. LLDP messages are periodically exchanged to check whether 

the connection links go up or down. The collected information of switches and links, 

including MAC and IP address of all the connected hosts in a database called topology 

database. Figure 5.2 shows the detailed steps of how the network detection module 

works with the SDN controller to discover the network topology. 
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Figure 5.2 Topology Discovery Module 

5.1.2 Network Monitoring Module  

This module is used to do real-time measurements of the network. It is very hard 

to calculate the route without knowing link load information for all the relevant links. 

However, SDN solves the problem and makes it much easier for both users and operators 

because the controller already has the global network view and access to all the 

information of topology. The controller keeps track of how much bandwidth is allocated 

in the network.  

In order to achieve some information like link utilization and the network 

topology updates, the controller listens to asynchronous messages such as 

OFPT_PACKET_IN message, OFPT_FLOW_REMOVED message and 

OFPT_PORT_STATUS message from each switch. The monitoring module tracks the 

amount of traffics by periodically polling flow statistics such as received and transmitted 

bytes or packets from all connected switches and takes a snapshot of the current network 

status. The module calculates link utilization and available bandwidth for bandwidth 

allocation. To calculate the link utilization of each link i for every time unit can be 

computed by using the number of transmitted bytes from the port statistic as follows:  

LUi = [ B(i, tj +1) –B(i, tj)] / [tj +1) – (tj) ]   Equation 5. 1  

Where tj, tj+1 indicate the two consecutive responses time and the number of 

transmitted bytes reported at time tj for link i is denoted as B(i, tj). B (i, tj + 1) indicate the 
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number of transmitted bytes reported at time tj+1. Then, the available bandwidth (ABWi) 

of each link can be computed simply by subtracting the link utilization (LUi ) from the 

network bandwidth capacity (BWi ) as follows: 

ABWi = BWi - LUi      Equation 5. 2 

After calculating available bandwidth, the monitoring module sends this 

information to the QoS routing module to compute routes to deliver the traffic form the 

source node to the specific destination node. Figure 5.3 depicts the work flow of network 

monitoring module in detail. 

 

 

Figure 5.3 Network Monitoring Module 

5.1.3 Delay Estimation Module 

This module is responsible to estimate a real-time delay of the network. This 

module adopts the LLDP protocol which is described in the topology discovery module 

since the SDN controller discovers all the links, in both directions, to updates its view 

of the network periodically. Figure 5.4 shows the workflow of the delay estimation 

module. 
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Figure 5.4 Delay Estimation Work Flow 

At first, the controller sets the timestamp at the beginning of the LLDP data 

transmission and then subtracts the received timestamp to estimate the delay from the 

controller to the switch S1. Then, from switch S1 to switch S2, and then report the delay 

T1 to the controller, an example is shown in the thick black arrow of Figure 5.4. The 

same inverse delay T2 consists of grey arrows. In addition, the controller-to-switch 

round-trip delay consists of a light black arrow and a grey arrow. This part of the delay 

is tested by the echo message, Ta, Tb.  

To get the logic of T1 and T2, the measurement method is as follows: the data 

from the Switches module are necessary. First, the LLDP packet is parsed from 

Packet_in to obtain the source DPID and source port. Then, according to the data of the 

sending port, the sending timestamp data in the port data is obtained, and the sending 

timestamp is subtracted from the current system time to obtain a delay, and finally saved 

to the graph data. 

 After that, this module needs to test the echo round-trip delay between the 

controller and the switch. The measurement method is as follows: the controller sends a 

time-stamped echo_request message to the switch, and then parses the echo_reply 

returned by the switch, and subtracts the sending time of the data part from the current 

time to obtain the round-trip time difference. So the implementation of the timing and 

parsing of echo_request is necessary.  
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After the calculation of the echo delay is completed, it is saved in the 

echo_latency dictionary and is ready for subsequent calculations. After the delay data is 

obtained, it is also necessary to calculate the delay of the link based on the data, and the 

formula is: 

T=(T1+T2-Ta-Tb)/2     Equation 5.3 

5.1.4 QoS Routing Module  

The main function of this module is to find the best path to alleviate network 

congestion and improve the QoS of network applications such as media streaming and 

online games which require strict QoS guarantees. In general, network providers 

optimize their network performance in order to effectively fulfill customer demands 

with traffic engineering (TE). Routing is a powerful tool of TE, and it can be used for 

controlling network data flows. The aim of TE routing is to route network data flows as 

much as possible by reserving the required bandwidth resource for each established 

route. A routing engine needs to select a route between a source and destination for each 

traffic flow.  

This module uses the network topology information from the topology discovery 

module and the traffic statistics from the monitoring module to compute multiple paths 

and pushes the resulting computation as flow rules to the SDN switches. Route 

calculation module calculates the shortest path tree from each source node to all the 

destinations by applying the shortest path finding algorithm, Dijkstra.  

This module uses Dijkstra’s shortest path algorithm [59] to find a set of candidate 

paths between a pair of source and destination. Dijkstra’s algorithm calculates the 

shortest path between two nodes on a network using a network topology graph. It can 

assign a cost value to every node. Set it to zero for the initial node (source node) and 

infinity for all other nodes. Firstly, the algorithm divides the nodes into two sets: 

tentative and permanent. Then, it chooses nodes, makes them tentative, examines them, 

and if they pass the criteria, makes them permanent. The outline of the Dijkstra’s 

algorithm can be expressed as shown in algorithm 5.1, [2], [59]: 
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Algorithm 5.1: Dijkstra’s Algorithm 

 

 

All the paths are stored in HashMap <key, value> form is used to store all the 

paths, and later the controller will use to determine the routes for different types of traffic 

with their QoS constraint. When a new flow arrives to the OF switch, it will send to the 

controller if the OF switch does not have flow entry for it. According to the flow 

information including in the packet header fields, the controller will select a suitable 

path with a sufficient amount of bandwidth available for it and send back to the OF 

switch as flow entries for packet forwarding.  

Whenever a new flow with bandwidth request arrives, the controller allocates 

the demand flow based on the current link utilization. After calculation possible path 

lists, check the available bandwidth of the path which can be implemented by using the 

statistic of the network monitoring module. If it is enough for the bandwidth guarantee 

rate, the controller selects the path as the optimal candidate path for routing. If it is not 

enough, the link is simply removed to avoid link performance degradation. After 

selecting the routing path, the controller updates the flow table of the switches along the 

path. Then, QoS mapping is implemented for QoS flow with a priority queue to provide 

a bandwidth guarantee.   
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5.1.5 Congestion Handling Module 

Over-demand of network resources can cause network congestion which may 

lead to performance degradation. It is therefore imperative to assume that network 

resources are sufficient to cater for the offered traffic most of the time. One way to deal 

with congestion on the hardware side is to increase the bandwidth on links in the 

networks. However, providing an oversupply in bandwidth is expensive and packet loss 

in a large network like data centers is primarily happening on links that are not heavily 

utilized on average. Hence, increasing the bandwidth would not solve the problem. The 

reason for the losses can be found in the bursty nature of the network traffic which causes 

congestion when multiple traffics flows transmitted on the same link produce high peaks 

simultaneously. 

The aim of the congestion control module is to provide network services to its 

users that meet certain performance criteria, often represented by a set of QoS 

parameters. One of the challenges in meeting QoS requirements is avoiding bandwidth 

starvation of certain traffic types by others. Flow rerouting is one of the ways to deal 

with the QoS degradation of the flows in the heavy network. A natural method for 

congestion control is using the low load path. Such routing also achieves load balancing 

of the network resources. The controller needed to reroute some of the current flows on 

the bottleneck link is detected to mitigate the flow congestion. Figure 5.5 shows the 

workflow procedure of the flow rerouting and the proposed flow rerouting algorithm 

will introduce in section 5.2.4. 

 

 

 

 

 

 

 

 

 

 

Figure 5.5 Workflow to Start the Flow Rerouting 
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To accomplish the best accommodation of resources possible, the rerouting 

algorithm is implementing with a non-dominated sorting genetic algorithm (GA) while 

focusing on rerouting the flows with the highest priority traffic. NSGA is an extension 

of the Genetic Algorithm for multiple objective function optimization. NSGA-II [20] is 

one of the most popular multi-objective optimization algorithms with three special 

characteristics, fast non-dominated sorting approach, fast crowded distance estimation 

procedure, and simple crowded comparison operator. NSGA-II can be roughly 

expressed as the following steps. Algorithm 5.2 describes the outline of the NSGA-II 

procedure in detail.  

Algorithm 5.2: NSGA-II Algorithm  

Step 1: Population initialization: Initialize the population based on the problem 

range and constraint.  

Step 2: Non dominated sort: Sorting process based on non-domination criteria 

of the population that has been initialized.  

Step 3: Crowding distance: Once the sorting is complete, the crowding distance 

value is assigned front wise. The individuals in a population are selected 

based on rank and crowding distance.   

Step 4: Selection: The selection of individuals is carried out using a binary 

tournament selection with a crowded-comparison operator. 

Step 5: Genetic Operators Real coded: GA using simulated binary crossover and 

polynomial mutation.  

Step 6: Recombination and selection: Offspring population and current 

generation population are combined and the individuals of the next 

generation are set by selection. The new generation is filled by each front 

subsequently until the population size exceeds the current population size.  

Subsequently, the NSGA-II algorithm selects the flow with the highest priority 

traffic and checks out if there is any other parallel route for this flow with enough free 

capacity to carry its traffic. In the case that there is another possible path with sufficient 

capacity, the flow will be routed through that route, sending the corresponding flow 

entries to each of the OpenFlow switches. Once the flow with highest priority traffic has 
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been routed across another path, the process starts again, and, in the case that the 

congestion still exists, the same procedure will be followed, moving the highest priority 

traffic flows along another route. 

5.2 The Proposed End-To-End Dynamic Bandwidth Allocation Scheme   

A network is modeled as a graph G = (N, E), where N is a set of nodes and E is 

the set of (directed) edges. Every edge (i, j) ∈ E has two associated properties: link 

capacity cij reflecting the bandwidth available to the corresponding link and the user 

required bandwidth rij. The link capacity is usually fixed, while the residual bandwidth 

is varied based on traffic on the link. The main notations of the proposed scheme are 

presented in Table 5.1. 

Table 5. 1 Main Notations 

Symbol  Definition 

G = (N,E)  the network graph 

N   the set of nodes  

E   the set of (directed) edges 

(i, j) ∈ E  the link between switch i and switch j 

Lbw  the link bandwidth 

Mbw  the maximum bandwidth usage 

D(s, d, r)  the flow demand matric 

s   source 

d   destination 

r   the user demand bandwidth 

Pij   the path from switch i and switch j 

Lu   the link utilization 

p   priority 

B   the number of transmitted bytes 

tj , tj+1  two consecutive responses time 

 

A demand matrix D = D (s, d, r) expresses the traffic demand from node s to 

node d in the network where all the links have required bandwidths equal or greater than 
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r. If the user demand can be accepted, the controller reserves bandwidth of r (Mbps) 

along path Pij.  

The outline of the proposed end-to-end dynamic bandwidth allocation scheme 

based on user QoS demands are presented in Table 5. 2.  

Table 5.2 Outline of the Proposed Scheme. 

Input A network G (N, E) with necessary information e.g. link bandwidth  

Flow demand D (s, d, r) 

Output A feasible path pi or no route satisfying the demand 

Steps For each D (s, d, r):  

1. Find a feasible path satisfying QoS requirements of the flow. 

2. Allocate bandwidth along the path. 

3. Estimate the link utilization and identified the bottleneck link. 

4. Reroute the highest priority flow. 

 

The implementation of the proposed QoS routing scheme can be divided into 

two levels; the controller and switch levels. The controller calculates the feasible path 

based on the user’s demand QoS in Module 1 that is flow-based routing to provide the 

QoS for the individual flow. Moreover, the flow rerouting algorithm is proposed in 

Module 2 that is responsible for congestion management in flow-based routing at the 

controller level of the proposed scheme.  

5.2.1 Bandwidth Allocation at Controller Level 

When a user wants a desire QoS such as bandwidth, the user can request the 

controller by sending a request packet which includes the flow information such as the 

source, destination and the required QoS factors such as the amount of bandwidth they 

need and a delay tolerate value. When the controller receives the request packet, the 

controller starts the routing engine and calculates the route for bandwidth allocation 

according to the user QoS demand by using topology and monitoring engine.  

Finally, the routing decision is issued by the per-flow routing policy. According 

to the demand QoS factors of bandwidth and network conditions, path selection is 

carried out for each flow which is advantageous to network resource orchestration and 

QoS guarantee. The SDN controller seeks the feasible paths that satisfy QoS 
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requirements of flow based on user demand. Then, the SDN controller enforces the QoS 

policy in the data plane. 

5.2.2 Bandwidth Allocation at Switch Level 

After calculating a feasible path for the request flow at the controller level, the 

proposed system tries to provide network resources to the flow at the switch level by 

taking advantage of the queue mechanism supported by OpenFlow protocol. Queuing 

allows us to ensure that important traffic, applications, and users have precedence. Each 

output interface can configure eight queues as the maximum number of queues per 

interface and flow entries mapped to a particular queue is treated according to the 

configuration of the queue. The controller maps the incoming flow according to its flow 

demand into the pre-create queues, and it installs the forwarding rules on each SDN 

switch over the determined path to support the QoS guarantee. 

5.2.3 Module 1: Flow-based Routing  

The hierarchy of the proposed QoS routing work flow has described in Figure 

5.6. 

 

 

 

 

 

 

 

 

 

 

Figure 5.6 Hierarchy of QoS Routing 
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flow information such as source node, destination node and request bandwidth. The 

controller checks the flow priority information which can show the incoming flow is 

QoS class types or best-effort class.  

In the proposed scheme, the routing engine firstly finds the most feasible path 

for required QoS. A feasible path can provide sufficient resource r to satisfy all the QoS 

requirements of the flow. For example, if the incoming flow type is the bandwidth 

demand QoS class or the Best-effort class, the QoS routing module chooses the 

maximum available bandwidth path by calculating link utilization. For the minimum 

delay demand QoS class flow, the QoS routing module calculates the link delay between 

the source and the destination nodes. Then, choose the minimum delay paths in order to 

meet the QoS requirement of the flow. After the path is calculated, the SDN controller 

installs flow entries to each switch along the path and updates the flow database of the 

switches along the path. Then, QoS mapping is implemented for QoS flow with a 

priority queue to provide a bandwidth guarantee. Ovs Switch can forward the packet by 

using the flow rule.  

5.2.4 Module 2: Flow Rerouting 

The proposed scheme attempts to avoid traffic congestion when a new flow is 

added to the link. The accepted flows bandwidth is investigated by reserving the required 

bandwidths (r) for incoming flows to know the maximum bandwidth usage (Mbw) by 

Equation (5.4): 

Mbw (new) = Mbw (old) + r     Equation 5.4 

After calculating the maximum bandwidth usage, the controller checks whether 

the usage bandwidth exceeds a predefined threshold to identify the bottleneck link. 

Identifying the network link bottleneck is very useful for both end-users and service 

providers. By identifying the bottleneck link, the proposed system can eliminate paths 

that have lower bandwidth and reroute the traffic over the bottleneck link to an 

alternative path with the highest bandwidth by using QoS routing. If the link bandwidth 

is greater than the predefined threshold value, we define the link as the bottleneck link 

and reroute the highest priority flow from the bottleneck link to an alternative link that 

has enough bandwidth for the rerouting flow. 
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If the link utilization exceeds a predefined threshold by allocating the new flow 

requested bandwidth, the controller reallocates the network resources by using the 

alternative path that has enough bandwidth to allocate the reroute flow. A typical routing 

algorithm routes just one flow in each step while the proposed rerouting algorithm 

reroutes one or more flows according to their priorities and reserved bandwidth to reduce 

the packet loss rate and provides higher QoS performance to the users. The proposed 

flow rerouting algorithm is presented in algorithm 5.3. 

Algorithm 5.3: Rerouting Algorithm  

 

 

 

Input: G=(N, E), Lbw, Lu of bottleneck links, flows on the bottleneck link, number of 

paths 

for flow in flows do: 

extract the flow information (s, d, r, p) 

list the flow ascending order according to p 

end for 

String FlowChoose ()       

      for flow in listed flows: 

            Chosen Flow = [] 

            Mbw -= r 

            If Mbw > predefined value, then 

             Chosen Flow += flow 

            else return Chosen Flow 

      end for 

Invoke NSGA-II (Chosen Flow, number of paths) 

      return optimal candidate path, max-Mbw 

Reroute the flow to optimal candidate path 

Update p by adding 1 //to prevent repeatedly rerouting  

Update the flow table along the path 

Queue in priority queue interface of each switch 

Reserve request bandwidth along the path 
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5.3 Chapter Summary  

It is difficult to deliver the newly emerging network services in a flexible way 

and to fulfill the huge amount of demand with better performance in a current network. 

Traditional routing cannot provide accessible performance for all traffic types, and it 

can cause excessive link utilization in the network. Another common problem that arises 

in networks that have to deal with large amounts of traffic is congestion. When a network 

device is receiving more data packets than it can process, the packets are delayed or lost 

which in turn reduces the overall throughput of the network. This certainly lowers the 

performance of the services and leads to a dissatisfying end-user experience.  

This chapter presents the proposed end-to-end dynamic bandwidth resource 

allocation scheme design in detail. The proposed scheme work is based on the QoS 

demand of the network users in the SDN network. We will demonstrate the effectiveness 

of the proposed scheme will be shown on the emulated SDN network in chapter 7. The 

details of individual experiments will be provided in-depth in the next chapter on 

implementation. 
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CHAPTER 6 

DESIGN AND IMPLEMENTATION OF THE PROPOSED 

SYSTEM 

This chapter covers the design for the implementation of the experiments. 

Furthermore, essential modules of the developed SDN application are adequately 

described to provide the reader an understanding of how the platform operates. This 

chapter instantly begins with an introduction of the proposed end-to-end QoS 

implementation, explains the applied SDN controller, and offers the mandatory 

information relating to the technology and options used in the implementation.  

6.1 The Proposed End-To-End QoS Implementation 

Fundamentally, QoS can offer better service to certain flows. This is often done 

by either raising the priority of a flow or carefully limiting the priority of another flow. 

Once using congestion-management tools, the network administrator tries to lift the 

priority of flow by queuing and servicing queues in different ways. Generally, the queue 

management tool used for congestion avoidance raises priority by intentionally dropping 

lower-priority flows before higher-priority flows. Policing and shaping give priority to 

flow by limiting the throughput of different flows. 

Generally, the type of flow must be identified to provide preferential service to 

an individual flow. Common ways of distinguishing flows embody access control lists 

(ACLs), policy-based routing, committed access rate (CAR), and network-based 

application recognition (NBAR). The proposed approach has been implemented based 

on policy-based routing. 

6.1.1 Class of QoS 

Each year the network service usages are growing and 2019 will be no different. 

The services differ in their level of QoS strictness, that the service can be bound by 

specific bandwidth, delay, jitter, and loss characteristics. On the other hand, the current 

IP-based network faces significant challenges in providing some types of service 

guarantees for various types of traffic. This has been a specific challenge for streaming 
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video applications, which regularly need a significant quantity of reserved bandwidth to 

be useful. 

According to a new report from Cisco [101], by 2019, online video is 

accountable for four-fifths of worldwide Internet traffic. In order to provide a good 

viewing experience, video streaming services have strict requirements on bandwidth and 

delay. Since the Internet is designed to offer best-effort services (i.e., no guarantee on 

bandwidth and delay) for cost efficiency as well as better reliability and robustness, it is 

essential and difficult to provide a Quality-of-Service (QoS) guarantee for video 

streaming services.  

Another highly demanded service in the current network is VoIP. Compared to 

video streaming, VoIP traffic does not consume a large amount of bandwidth but have 

different and stricter QoS requirements. Using a voice service implies that users interact 

with each other, since the service is rather sensitive to delays and jitter in the 

communication, due to the bi-directional nature of a teleconference or voice call. For 

instance, if the user must wait too long for the other user to respond, then the 

conversation can end up, thus the experience is affected. The category includes 

teleconferences and calls with and without video, and will simply be referred to as 

Voice. Moreover, a category that covers the fundamental service which may include 

HTTP, FTP, SNMP, PoP3 and Telnet can be specified as the best-effort service type. 

Hence, these types of services are robust regarding network traffic conditions and not 

nearly as sensitive to varying network conditions as voice and video are. 

Table 6.1 Example QoS Types and QoS Requirement 

Types Characteristics QoS requirement 

Voice 

 

Alternative talk-spurts and silence 

intervals 

Talk-spurts produce constant packet-

rate traffic 

Delay <~ 150 ms 

Jitter <~ 30 ms 

Packet loss <~ 1% 

Video Highly bursty traffic 

Long range dependencies 

Delay <~ 400 ms 

Jitter <~ 30 ms 

Packet loss <~ 1% 

Best-effort 

 

Poisson type 

Sometimes bursty, or sometimes on-

off 

Zero or near zero packet 

loss 

Delay may be important 
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This leads to three categories: Voice, Video and Best Effort. They will be the 

basis for the traffic to study when determining the requirements for the network. Table 

6.1 describes the example of QoS types and their requirements for network 

communication [103]. 

Since the QoS is at the forefront of the present networking, the future internet 

brings us the notion of user-based QoS in which QoS policies are based on a user as well 

as application. Therefore, the user demand QoS approach is considered to draw the QoS 

policies on our work. In the proposed approach, we differentiate the QoS traffic classes 

based on these baseline QoS requirements as shown in Table 6.1. In order to allocate an 

appropriate route for each traffic, we assume that network users register their 

preferences of QoS demands to the controller. The controller maintains the registered 

information and finds the most feasible path for each QoS demand. The possible options 

for preferences QoS demands are minimum delay, bandwidth and default (best-effort). 

Table 6.2 shows the available QoS classes in the proposed approach. 

Table 6.2 Available QoS Classes 

QoS class Applications 

Minimum-delay 

demand 

Gaming , remote control application (haptic application), 

VoIP 

Bandwidth demand Multimedia streaming (voice, video), data storage  

Best effort Telnet, FTP, HTTP 

6.1.2 Flow Requirements 

Individual flows may have certain network performance requirements, such as 

bandwidth, delay, minimum error rate and so on. If a flow carries a significant video 

stream, then it is of interest to forward the traffic down a path that supports the capacity 

requirements. To make sure that the flow maintains its requirements in the future, 

reservations would be necessary to prohibit other traffic streams to occupy resources on 

the same route (QoS). 

Since the SDN controller is the Policy Decision Point, it can be developed to 

own full management of the incoming flows to the network. By programming the 
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controller to get the network topology information, it is possible to make forwarding 

decisions based on its information regarding the flow and map this to the topology. 

Information about particular flows must be predefined, for example, the minimum 

bandwidth requirements of the flows. Additionally, the controller would also need to 

store flow reservations in a database and maintain state. 

6.1.4 Flow Priority 

Among the network, the transmitted traffic may have totally different priorities 

based on the user’s QoS-demand. An SDN controller is programmed to handle traffic 

differently and assign priority to the flows. This can be realized either by using the 

priority field within the flow rules or by maintaining state regarding the policy priority.  

The prioritized traffic should be able to meet the desired QoS factor once it arrives to 

the destination at the other end. Due to possible network capacity limitations, there 

should be trade-offs once the requirement for capacity is higher than what the network 

can offer. Therefore, prioritizing of traffic could be a mitigation strategy to confirm that 

the highest priority traffic is distributed and received across the network without service 

degradation too much then the lower priority traffic. The priority ranges from 1 to 16, 

where 1 is the highest priority. Configuring the flow priority is the important factor for 

the application, and it will become the primary factor when the network faces the 

congestion, the top priority flow will reroute first. 

6.1.5 Queue Implementation 

This section is responsible for configuring queues on the output interfaces of the 

switches and maintains the queue configuration information. As a maximum number of 

queues per interface, each output interface can configure eight queues. For our study, 

only three queues are created for each output interface of the switches. Flows are 

classified into different levels and allocate network resources dynamically to provide 

high QoS for each traffic. Different types of traffic will be transmitted through different 

queues. For example, the QoS-flows will queue into the high priority queue to acquire 

sufficient bandwidth resources since the cross-traffic queue has the lowest priority. 

Rate guarantees can be classified into Soft QoS and Hard QoS. From the point 

of implementation view, Soft QoS is more flexible but it does not provide very strong 

guarantees. On the other hand, Hard QoS guarantees are rigid that reserves a portion of 
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the bandwidth to be used only by a specific flow. It has stringent policies on the 

admission of the flow. If the required bandwidth is not available, the flow is rejected at 

the ingress itself.  

In the study, three different queues are set at a port and assign different priorities 

to them. Therefore, one of the three queue priorities can be assigned for the different 

QoS flows. The incoming flows are categorized into the three QoS priority classes (high, 

medium, and low) and map with the priority queue according to their flow properties. 

For example, services like voice and video applications which are particularly sensitive 

to latency but less sensitive to packet loss can be mapped to the high priority queue. A 

QoS policy rule is assigned to the QoS priority flow associated with the rule. However, 

the QoS priority has differed from the queue priority. From the perspective of the flow 

priority, bandwidth demand flows is set as the highest priority flow in the proposed. 

When the controller finds the bottleneck link, the controller reroutes the flow based on 

the QoS flow priority.  

6.1.6 Policy Setting 

Each application or client has its own set of requirements, typically defined in 

their Service Level Agreements (SLAs). Quality-of-Service (QoS) requirements include 

end-to-end bandwidth and latency among other attributes, as we discussed in the 

previous session. This section will present the policy setting and policy lists. It will use 

to calculate the route that can meet the QoS requirement of the network application as 

the user demand. Before the connection setup, the user needs to register the required 

bandwidth and favorable QoS demand factor. Based on this information, a policy will 

draw to meet the user QoS-demand. The policy-setting will load at the start-up phase of 

the Ryu controller. In the run-time phase, all of the incoming flows will be checked 

against this list.  

Each policy contains a pair of match conditions and actions. Match conditions 

are defined to map a policy with a particular flow. The policy needs a minimum of one 

match condition to figure for the QoS_policy. The policy list is applied to at least one 

direction of the flow which means the different policies can fetch for each direction of 

the flow. For instance, a host (h1) initiates a connection to host (h2), the policy-check 

will run for h1-h2. After matching, the actions will follow. A policy can be designed to 
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have several actions. Each policy is configured to own priority and enqueue-id in 

actions.  

Table 6.3 Possible Policy List 

QoS_Policy Match Action 

1 user_ip or server_ip bandwidth_request = r Mbps, 

set_priority = 1, set_queue = 2 

2 user_ip or server_ip bandwidth_request = r Mbps, 

set_priority = 8, set_queue = 1 

3 user_ip bandwidth_request = 0 Mbps, 

set_priority = 16, set_queue = 0 

 

When a new incoming flow arrives, the controller will find a matching policy. 

Table 6.3 lists the possible policy list. The example of the policy structure is as follow:  

 If the incoming flow is a min_delay demand flow, it will against the QoS-Policy1 

by reserving the user request bandwidth r. 

 If the incoming flow is a bandwidth demand flow, it will against the QoS-Policy2 

by reserving the user request bandwidth r.  

 If the user does not make register for the QoS demand, the controller will draw 

the default policy without reserving bandwidth.  

When a flow is coming to the network, the network administrators define 

policies according to the pre-register information of the users. The register information 

of the users is stored in the policy list. The controller will make a forwarding decision 

based on the specific policy. Whenever the incoming flows reach the controller, the 

application will browse the policy list for it and check packet parameters against match 

conditions. Once the policy is accepted, the application will then compile the policy into 

flow rules, where it will configure the MAC source and destination addresses of the 

communication entities as match conditions for the flow rules. After a policy is applied 

and used in the network, it is keeping to a different list however further parameters are 

added, such as chosen path and flow information. Figure 6.1 illustrates the logical design 

of the policy storage with the forwarding decision process.  

This list saves the enforced policies, that the controller keeps the state of every 

running policy on each path within the network. The forwarding decision process will 
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examine this list if it is necessary to reroute a flow in the congestion handling process. 

Despite this, it is necessary to notice that the figure only displays the policy process; the 

controllers monitored the view of the topology and traffic influences the forwarding 

decision process. 
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Figure 6.1 The Logical Policy Storage 

6.1.7 Forwarding Decision 

Traffic engineering mechanisms which can police the traffic to mitigate the 

network or parts of the network fail because of the network bottleneck link (too heavy 

loaded link). The traffic should be spread across the network to prevent congestions on 

individual links. When connections break down or fail, it is congested in the network 

link, it is important to undertake to seek out new paths to the destination. Re-routing is 

an important ability that the network must perform in a prompt manner. Another 

interesting component of routing is to enforce randomness to avoid predictable flowing 

paths, which could be advantageous in a security perspective. The controller is 

programmed to find alternative ways by obtaining topology information, once the 

network congestion happens, as well as use random generation algorithms to choose 

paths when incoming flows arrive at the network. The controller can maintain the paths 

which were previously chosen. 
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6.2 Ryu Controller 

In the SDN environment, it is essential to select the controller to conduct the 

proposed application. The common open-source SDN controllers were already 

introduced in Chapter 4. In this section, an SDN controller, Ryu [96] will be discussed 

through that operations flow. The logo of the Ryu controller is dragon and Ryū in 

Japanese stands for a dragon. Ryu is usually mentioned as component-based, open-

source software-defined by a networking framework. It is supported by NTT’s labs and 

executed entirely in Python. Figure 6.2 below depicts the Ryu framework and its main 

components [96]. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2 Ryu Framework 

In the framework, Ryu provides software components with well-defined APIs. 

By using these APIs, the network developers can make new network management and 

control applications. Additionally, Ryu supports multiple southbound protocols for 

managing devices, like Network Configuration Protocol (NETCONF), OpenFlow, 

OpenFlow Management and Configuration Protocol (OF-Config), and others. The vital 

components of the architecture are explained in the sub-session bellow. 
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6.2.1 Ryu Libraries  

Ryu supports several libraries and multiple southbound protocols. Relating to 

southbound protocols, Ryu also supports Open vSwitch Database Management Protocol 

(OVSDB), OF-Config, NETCONF, Sflow [99], Netflow [105], and other third-party 

protocols. Sflow and Netflow protocols can be used for network traffic measurement by 

using various methods such as packet sampling and aggregation. The third-party 

libraries embody Open vSwitch Python binding, the Oslo configuration library and a 

Python library for the NETCONF client. With the help of Ryu’s packet library, the 

network developer can analyze and build several protocol packets, like VLAN, MPLS, 

etc.  

6.2.2 OpenFlow Protocol and Controller 

The Ryu framework includes an internal controller and the OF protocol which is 

one of the supported southbound protocols. Ryu supports the OpenFlow protocol 

starting from version 1.0 to the latest version 1.4. Table 6.4 summarizes the OpenFlow 

protocol messages and corresponding API of the Ryu controller. 

Table 6.4 OpenFlow Protocol Messages and Corresponding API of Ryu 

 

In the Ryu architecture, the OpenFlow controller is one of the internal event 

sources and which can manage the switches and events. In addition, Ryu includes an 

OpenFlow protocol encoder and decoder library. 
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6.2.3 Managers and Core-processes 

The main executable component in the Ryu architecture is the Ryu manager. In 

the run time, the Ryu manager creates a listener that can connect to the OpenFlow 

switches. Once it is run, it listens to the specified IP address and the specified port (6633 

by default). Then, any OpenFlow switch can connect to the Ryu manager. The App-

manager is one of the main components for all Ryu applications since they need to 

inherit functionality from the App-manager’s RyuApp class. The core-process 

component in the architecture includes messaging, event management, in-memory state 

management, etc. In the architecture,  the northbound Application Programming 

Interface (API) is illustrated in the uppermost layer, where supported plug-ins can 

communicate with Ryu’s OF operations.  

6.2.4 RYU Northbound API 

At the API layer, Ryu generously supports a REST interface to its OpenFlow 

operations. Ryu also includes an Openstack Neutron plug-in that supports both typical 

VLAN and GRE-based overlay configurations. In a worthy addition, the researcher can 

easily create REST APIs by using a framework for connecting web servers and 

applications in Python called WSGI. 

6.2.5 RYU Applications 

Ryu application is one of the essential elements since the control logic and 

behavior is defined in it. Multiple applications are already included in the Ryu 

framework such as topology, simple_switch, firewall, router, etc. Although Ryu 

applications are implemented and provided various functionalities, they work as the 

single-threaded entities. Formerly, Ryu applications send asynchronous events to each 

other.  

Each Ryu application ordinarily has its own receive queue for possible events, 

that is especially FIFO to properly preserve the executive order of events. Furthermore, 

each application typically includes a thread for properly processing events from the 

queue. The thread’s main loop pops out events from the receive queue and calls the 

suitable event handler. Therefore, the event handler is naturally called within the context 

of the event-processing thread, that works in a blocking fashion, i.e., once an event 
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handler is given management, no additional events for the Ryu application are going to 

be processed till management is returned. The functional architecture of a Ryu 

application is introduced in Figure 6.3. 

 

Figure 6.3 Functional Architecture of Ryu Application 

6.3 Mininet Network Emulator 

To emulate an entire network infrastructure in the SDN environment, Mininet 

[87] network emulator is used. It is the main tool for Software-Defined Networking 

testbed environments to design, undergo and verify OpenFlow projects. Mininet 

provides a high level of flexibility since topologies and new functionalities are 

programmed using python language. It also provides a scalable prototyping 

environment, able to manage up to 4000 switches on a regular computer. This is possible 

due to an OS-level virtualization feature, as well as including processes and network 

namespaces, that permits to produce completely different and separate instances of 

network interfaces and routing tables that typically operate the independents of every 

different. 

Mininet mainly allows the hosts, switches, and controllers and it creates a huge 

network simulation in a single PC. It creates the virtual open flow network which 

includes SDN controller, OpenFlow software switches, multiple hosts and links in a real 

or virtual machine. The Mininet tool will work in the different operating systems such 

as Mac OS, Windows, and Linux. Mostly for the Research part, Linux is preferable. 
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Using Mininet can create the small data center consists of hosts and open flow switches. 

By implementing this experiment, the output can be achieved. 

6.3.1 Topology Elements 

There are four topology elements that Mininet can create: 

 Link: emulates a wired connection between two virtual interfaces which act as 

a fully functional Ethernet port. Packets are delivered through one interface to 

another. It is possible to configure Traffic Control for the links importing the 

TCLink library via the Python API. 

 Host: emulates a Linux computer which is simply a shell process moved into its 

own namespace, from where commands can be called. Each host has its own 

virtual Ethernet interface. 

 Switch: software OpenFlow switches typically provide the identical packet 

delivery semantics that will be provided by a hardware switch. 

 Controller: Mininet allows to create controller within the same emulation or to 

connect the emulated network to an external controller running anywhere there 

is IP connectivity with the machine where Mininet is running. 

6.3.2 Command Used to Create Topology in Mininet  

To execute Mininet passing a file containing a particular topology, the command 

mn has to be accompanied to the parameter --topo mytopo and the parameter --custom 

mytopo, and the name of the file is simple_topo.py. 

The command used to launch a custom network topology is this: 

 

The option --mac is used to set automatically the host MACs addresses. With --custom 

we indicate the path in which is present the file from which you will take the topology, 

in this case mytopo.py, followed by the command --topo mytopo which is the specified 

name given to the topo variable inside the file simple_topo.py. 
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6.4  Traffic Generator and Measurement Tools 

For this academic research, accuracy in the measurement is not a necessary 

objective. However, it should be precise enough to sufficiently reveal general behavior 

and distinct tendencies of the network traffic. Subsequently, the following tools were 

properly selected for the objective measurement of the achieved bandwidth and analysis 

of traffic under different QoS settings: iPerf [82], Wireshark [98], and DITG [7]. 

6.4.1 Iperf  

Iperf is a very useful performance measurement tool for measuring the maximum 

bandwidth available between two nodes. It is utilized in TCP (Transport Control 

Protocol) and UDP (User Datagram Protocol) connections, through the modulation of 

various parameters. Mainly Iperf is used for the bandwidth and datagram loss. It mainly 

uses to calculate the network flow between the two nodes. It must be installed on both 

nodes, then it must be started as a server on one node, and as a client on the other one. 

The transmission procedure will take only a few seconds and then you will see the 

bandwidth. 

The following work can be done by using Iperf: 

 measure bandwidth 

 in a client-server network, the client generates a UDP flux, with 

 a specific bandwidth (BW) 

 measure packet loss  

 measure jitter 

 work in a multicast environment.  

6.4.2 Wireshark 

Wireshark in common is a common network packet analyzer which can be 

popularly used on the controller or Mininet host to properly look at OpenFlow exchange 

message between the controller and individual switches. It adequately captures a packet 

within the network to instantly show its TCP/IP layer information as detailed as possible, 

letting to look at its explicit content for purposes like network troubleshooting, security 

examinations, protocol debugging and network protocol learning.  
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This tool permits to properly capture live packets from a network interface 

(physical or virtual), displaying correctly the packet information with elaborate protocol 

information, and saving all packet captures for additional studies and reliable statistics. 

The captured information can be analyzed under different criteria, in which the 

necessary information can be altered by timestamps, TCP/UDP ports, protocols, TCP 

sessions, and more.  

Since Wireshark remain an effective tool that works at user-space, it uses the 

pcap library to permit Wireshark to capture packets at a lower level. This typically 

allows the capture of packets with a more precise timestamp since there is no additional 

delay caused by the internal communication process between the user-space and kernel-

space levels. This research has used the Wireshark dissector provided by a Mininet 

package, that enables the OpenFlow filter to typically capture OpenFlow messages and 

carefully observe their message format in detail, as well as flow entries and group 

entries. 

6.4.3 Distributed Internet Traffic Generator (DITG) 

One important component of the experiment framework is the traffic generator 

which is used to generate network traffic flows in the emulated network. In the network 

experiments, single flow traces collected in real networks should be replayed as they 

occurred in the real network which means that the packet timing and packet sizes should 

replicate the real scenario as exactly as possible. 

There are several traffic generators that support such a trace-based traffic 

generation like TCPreplay [100] or TCPopera [33]. However, because of the possibility 

to schedule multiple flows and the more comprehensive and convenient way of altering 

properties of single flows, the distributed internet traffic generator (D-ITG) was selected 

to be integrated into the experiment framework. Furthermore, D-ITG offers more 

advanced features for calculating and logging network metrics and provides also an 

analytical model-based traffic generation mode. In this mode, D-ITG is capable of 

producing realistic network workloads that replicate stochastic processes [7]. During the 

experiments, this functionality was not utilized but might be useful in some other 

scenarios which are the reason why the experiment framework becomes more flexible 

by integrating the D-ITG traffic generator rather than a trace-based only generator. 
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6.5 The Test-bed Implementation with Mininet 

The SDN controller, Ryu framework is designed to run on the host computer 

with a TCP connection to the emulated Mininet network topology. The detailed software 

versions are shown in Table 6.5. 

Table 6.5 Testbed Requirements 

No  Name Specification 

1 Operating System Ubuntu 16.04 LTS (64 bits) 

2 Ryu controller [Ryu] Version 4.30 

3 Mininet Emulator [Mininet] Version 2.2.1 

4 OpenFlow Protocol [OpenFlow] Version 1.3 

 

The test-bed implementation is structured as illustrated in Figure 6.3 

 

Figure 6.4 Simple Network Topology 

Firstly, run a simple network topology as shown in Figure 6.4, composed by 

three clients, h1, h2, and h6 and four servers h3, h4, h5, h7. There are three paths to 

communicate from the clients to the servers. Hence, path (s1, s3) is the direct 

communication link and it is the minimum hop count path (shortest path) leaving the 

other two equal-cost paths (s1, s2, s3) and (s1, s4, s3) as the second shortest. The Mininet 

script file is shown in the script file below.  
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simple_topo.py  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

# !/usr/bin/env python 

from mininet.net import Mininet, CLI 

from mininet.node import RemoteController, OVSKernelSwitch, UserSwitch, Host 

from mininet.link import TCLink,Link 

from mininet.term import makeTerms, makeTerm, runX11 

import argparse 

import subprocess 

net = Mininet(controller=RemoteController, switch=OVSKernelSwitch, link=TCLink) 

h1 = net.addHost ( 'h1', mac = '00:00:00:00:00:01', ip = '10.0.0.10' ) 

h2 = net.addHost ( 'h2', mac = '00:00:00:00:00:02', ip = '10.0.0.20' ) 

h3 = net.addHost ( 'h3', mac = '00:00:00:00:00:03', ip = '10.0.0.30' ) 

h4 = net.addHost ( 'h4', mac = '00:00:00:00:00:04', ip = '10.0.0.40' ) 

h5 = net.addHost ( 'h5', mac = '00:00:00:00:00:05', ip = '10.0.0.50' ) 

h6 = net.addHost ( 'h6', mac = '00:00:00:00:00:06', ip = '10.0.0.60' ) 

h7 = net.addHost ( 'h7', mac = '00:00:00:00:00:07', ip = '10.0.0.70' ) 

s1 = net.addSwitch ( 's1', cls = OVSKernelSwitch, protocols = 'OpenFlow13' ) 

s2 = net.addSwitch ( 's2', cls = OVSKernelSwitch, protocols = 'OpenFlow13' ) 

s3 = net.addSwitch ( 's3', cls = OVSKernelSwitch, protocols = 'OpenFlow13' ) 

s4 = net.addSwitch ( 's4', cls = OVSKernelSwitch, protocols = 'OpenFlow13' ) 

net.addLink( s1, s2, port1=1, port2=1) 

net.addLink( s2, s3, port1=2, port2=2) 

net.addLink( s1, s4, port1=2, port2=1) 

net.addLink( s3, s4, port1=3, port2=2) 

net.addLink( s1, s3, port1=3, port2=1) 

net.addLink( s3, h6) 

net.addLink( s3, h4) 

net.addLink( s3, h5) 

net.addLink( s3, h7) 

net.addLink( h1, s1) 

net.addLink( h2, s1) 

net.addLink( h3, s1) 

net.addController('c0') 

net.start() 

CLI(net) 

net.stop() 
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The topology in mininet is created with this command: 

 

root@ntz: sudo python simple_topo.py 

 

After this command is launched, the CLI devolves the output shown in Figure 6.5. 

 

Figure 6.5 Network Topology Created 

The Ping command is used to verify connectivity among devices. In Mininet it 

is possible to use the pingall command, that does an all-pairs ping. This command 

verifies that the created links function. The figure below shows that when running the 

first time the pingall command, the first host does not have connectivity with other hosts, 

while all the other links are good.  

 

 

Figure 6.6 Pingall Command Executed 
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6.6  QoS Measurement Parameters 

The proposed QT approach is compared with three methods: (i) conventional 

shortest path routing, (ii) multipath routing and (iii) Hedera in fat tree topology in terms 

of performance.  The performance  of  the proposed QT approach is measured by QoS 

parameters such as: 

1.  Throughput: It is the rate of successful message delivery over a network. 

Throughput is measured in Bps (bytes per second) or bps (bits per second). If more 

data transferred, higher throughput result. 

2.  Delay: It’s the amount of time it takes to send information from one point to the 

next. Delay is usually measured in milliseconds or ms. The ITU-T recommends that 

in general network planning, a maximum of 400 ms for the one-way delay should 

not be exceeded. However, they note that many interactive applications (e.g, voice 

calls, video conferencing, interactive data applications) are affected by a much lower 

delay. The experiences of most applications are generally considered acceptable if 

the delay is kept below 150 ms. As the traffic latency increases, the impact on 

applications’ experiences becomes noticeable. When the delay exceeds 400 ms, most 

applications will encounter unsatisfactory performance. Several factors affect the 

end-to-end delay of transmitted data packets. They include processing delay, 

queueing delay, transmission delay, and propagation delay. It impacts the user 

experience and can change based on several factors. For simplicity, only 

transmission delay will consider in the experiment and assume the other type of 

delays is negligible. 

3. Jitter: It is based on the delay - specifically, delay variations. Jitter is the 

difference between the delay of two packets. It often results in packet loss and 

network congestion. 

4.  Packet Loss: It occurs when one or more packets of data traveling across the 

network fail to reach their destination. One of the major causes of packet loss is link 

congestion. It is either caused by errors in data transmission. 

Results are expected to be better for the QT approach in terms of throughput and 

packet loss because in this approach the end-to-end bandwidth resource allocation is 

presented to provide better QoS performance for different types of traffic. Moreover, 
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the QT approach can be reduced the amount of delay for the minimum delay demand 

flow due to its delay estimation module which is used in the QoS routing module. 

6.7 Chapter Summary 

In this approach, it is assumed that network users register their preferences of 

QoS demands to the controller in order to allocate an appropriate route for each traffic. 

The controller maintains the registered information and finds the most feasible path for 

each QoS demand. The minimum delay demand flow has the highest priority flow; the 

bandwidth demand flow has the medium priority flow and leaving the default flow as 

the lowest priority flow. For the bandwidth demand flow, the controller finds the 

maximum bandwidth path to improve the performance of the flow throughput. For the 

delay demand flow, the controller chooses the minimum delay paths. 

This chapter presents the QoS classes and the related policies that will apply in 

the proposed system. By using these technologies and features, the proposed system will 

demonstrate and test the performance of the proposed approach in the next chapter. 
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CHAPTER 7 

EXPERIMENTAL RESULTS AND ANALYSIS 

This chapter investigates the performance of the proposed approach (QT) and 

tests the validity of the proposed resource allocation scheme. This chapter shows and 

explains the results obtained with the scenario proposed in the previous chapter. The 

analysis consists of end-to-end measurements of throughput, latency, jitter, and losses 

for UDP and TCP connections with different traffic patterns. The first point with 

analysis of the default behavior of the OpenFlow’s supportive QoS features are also 

included. All the measurements have been done by generating the network traffics with 

the use of DITG. In order to evaluate the performance of the proposed approach (QT), 

the experimental testbed has to be designed. As the proposed system is implemented 

using the Ryu controller, it runs different topologies in order to compare and evaluate 

the results with or without the proposed method. In order to have deterministic and low-

cost environments to test, a virtual testbed was created on a PC with Intel Core i7-6500U 

processor, 8 GB of RAM, and 1TB of hard disk space running Ubuntu 16.04 LTS 

operating system. The Python implementation of the experiment used Python version 

2.7.  

7.1  Preliminary Experiments with User-space Switches (CPqD) 

This section serves as an initial exploration of the bandwidth guaranteeing 

system with the OpenFlow protocol. Currently, OpenFlow is supported for QoS in the 

SDN environment by two options, specifically the queue and meter. A queue is an egress 

packet queuing mechanism in the OpenFlow switch port. Although OpenFlow supports 

the queue features, it does not handle queue management; it is just able to query queue 

statistics from the switch. Therefore, the queuing feature of OpenFlow is a property of 

a switch port. Meters have been introduced in OpenFlow protocol in version 1.3 to 

measure and control the ingress rate of packets in switches. OpenFlow metering enables 

the ingress rate monitoring of flow and performs operations based on the rate of the 

flow. Unlike a queue, a meter is attached to flow entries. A meter has a component called 

meter band which specifies the rate at which the meter is applied. A meter can have one 

or more meter bands but only a single band is applied for each flow at a time based on 
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the rate of packets. A flow which is mapped to a meter directs packets to the meter which 

measures the rate of the packets and activates appropriate meter band if the measured 

rate of packet goes beyond the rate defined in the meter band. This experiment focuses 

on the studying of providing bandwidth guarantee with OpenFlow supportive QoS 

features, queue and meter. 

7.1.1  Experimental Setup 

All network topologies are emulated on an Ubuntu 16.4LTS virtual machine. 

The emulation is conducted using a network topology including one controller, four 

switches, and four hosts as shown in Figure 7.1. Mininet is used for the network 

emulation in all the experiments. Mininet is a network emulator that can run multiple 

end-hosts on a single Linux kernel. Various network topologies with different switches, 

routers, and links can be created. Once a topology is set up, each element of it runs on 

the same kernel. Links can be set up at arbitrary bandwidth, network delay and packet 

loss. Furthermore, each host in Mininet behaves just like a real machine. “Ryu” 

controller is used to control the topology which is supported by the emulator. All the 

switches are User-space switches (CPqD) for the purpose of testing since OpenvSwitch 

(v2.8) does not fully support meter features with DSCP_remark. Only the CPqD switch 

can support the ‘dscp_remark’ meter band setup.  

 

 

Figure 7.1 Test-bed Environment 
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A network topology has been developed via a script in Mininet. After running 

the topology script, the controller takes action to load topology information using Ryu’s 

library and set QoS configuration to a link between switches. Then, we apply the 

configuration of Iperf client and server to each virtual host to verify the throughput of 

the network. For all the tests, the proposed system used the same topology in order to 

have the basis for comparison. 

7.1.2  Evaluation Results 

This section investigates the use of OpenFlow’s meter function in QoS control 

with different scenarios and measures the performance of the network. Iperf utility is 

used to generate traffic in all of our experiments. Iperf is a generally-used network 

testing tool that can create Transmission Control Protocol (TCP) and User Datagram 

Protocol (UDP) data streams and measure the throughput of a network that is carrying 

them. Iperf allows the user to set various parameters to test the performance of the 

network. For example, the user can measure the throughput between the two ends since 

Iperf has a client and server functionality. Instead of TCP traffic flow, UDP traffic flows 

are adopted, which provide the most efficient means of congesting the bottleneck link. 

7.1.2.1 Scenario 1: Without QoS Setting 

In the first scenario, testing starts all the flows at the same time in the best effort 

fashion with bandwidth limitation. Traffic flow is set as shown in Table 7.1.  

Table 7.1 Network Experiment Flows for Scenario 1 

Flow ID Flow Type Source- Destination Destination Port Protocol Traffic (kbps) 

Flow 1 BE H2 - H1 5001 UDP 800 

Flow 2 BE H3 - H1 5002 UDP 400 

Flow 3 BE H4 - H1 5003 UDP 600 

 

A flow may congest the network with other flows if all traffic is handled in a 

best-effort fashion and it is possible to see that all traffic competes for the total 

bandwidth. Flow congestion will increase whenever a new flow arrives. According to 

the common best-effort manner, packets are simply dropped if congestion happens. 
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Figure 7.2 shows that there is no bandwidth guarantee for all the flows without QoS 

implementation. 

 

 

Figure 7.2 Flow Bandwidth Distribution Between All Data Flows 

7.1.2.2 Scenario 2: With QoS Setting 

The second scenario is to run the same topology as scenario 1 by adding queue 

and meter functions to reserve network bandwidth for QoS flows. In order to abstract 

simulations, the queue was created with predefined bandwidth allocation in S1 and 

configure the static meter setting in other switches. In S1, every port has three different 

level queues and different QoS parameters (minimum bandwidth) are configured for 

those queues. All the incoming packets to S1 are assigned to one of these queues before 

forwarding to the destination. Table 7.2 shows the bandwidth allocation with the queue 

setting. 

Table 7.2 Queue Configurations for Experiment 

 

This scenario classifies the traffic flows into two types: QoS-flow and best-effort 

flow. QoS is implemented using DiffServ and uses different differentiated services code 

point (DSCP) numbers to classify network traffic for quality of service (QoS) levels. 

DSCP = 0 is used for the best-effort flow in this experiment. DSCP = 10 (AF11) and 

DSCP = 12 (AF12) are used for QoS-flow 1 and QoS-flow 2 respectively. Each DSCP 
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value is matched with a meter instruction in the meter table and looks up the 

corresponding queue on the switch’s flow table. Then, packets are sent out to the 

neighbor switches from their corresponding output ports and queue based on the DSCP 

number in the packet header. Bandwidth guaranteed for AF11 class traffic is set (QoS-

flow 1) with 400 kbps. Table 7.3 shows the meter band, and Table 7.4 shows flow entry 

information with meter and queue.  

Table 7.3 Meter Band Setting 

Meter ID Flags Bands 

1 kpbs type:dscp_remark, rate:400 kbps 

Table 7.4 Flow Entry Information with Meter 

QoS ID Meter ID Source- Destination Destination Port Protocol Traffic (kbps) 

1 - H2 - H1 5001 UDP 800 

2 1 H3 - H1 5002 UDP 400 

3 - H4 - H1 5003 UDP 600 

A comparison of throughput fluctuations is made between the best-effort data flow and 

QoS-flow. Figure 7.3 shows the time-varying throughput for the best-effort flow and 

QoS-flow 1. If AF11 class traffic exceeds 400 kbps, re-marked the traffic as AF12 class 

and treated as excess traffic. Figure 7.4 shows the flow bandwidth distribution between 

the best-effort flow and QoS-flow 2 (AF12), and according to these results, AF12 is 

more preferentially guaranteed bandwidth than the traffic of the best effort. 

 

Figure 7.3 Flow Bandwidth Distribution Between Best-effort Flow and QoS-flow 1 
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Figure 7.4 Flow Bandwidth Distribution Between Best-effort Flow and QoS-flow 2 

(AF12) 

 

Figure 7.5 Flow Bandwidth Distribution Between QoS-flow 2 (AF12) and QoS-flow 2 

(AF12) 

 

Figure 7.6 Flow Bandwidth Distribution Between QoS-flows and Best-effort Flow 
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Figure 7.5 shows that when the two QoS-flow 2 (AF12) is faced with network 

congestion both of them drop at the same rate. According to the results in Figure 7.6, 

meter bands are limiting bandwidth per-flow and the queue provides bandwidth 

guarantees for each specific application as expected. For this round, best-effort network 

traffic is generated with 400 kbps instead of using 800 kbps like all the above 

experiments. For the sake of demonstration, the network congestion rate has been 

reduced slightly because the test-bed’s link capacity is set to 1 Mbps. 

According to the QoS configuration setting, best-effort flows are passed through 

q1 and QoS-flow 1 with DSCP=10 will be passed through to q3. Lastly, QoS-flow 2 

(remark packets/flows) is passed through to q2. Figure 7.7 describes the statistical 

information of all the queues related to port 1 in S1, and Figure 7.8 notifies the statistics 

of meter used in the experiment. 

 

Figure 7.7 Statistical Information of Queues in S1 

 

Figure 7.8 Statistic of Meter in S3 
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A well-designed QoS system should give access to the right amount of network 

resources needed by the various data flows using the network. In this experiment, 

implementation and verification of QoS control in SDN with the help of OpenFlow’s 

QoS functionality were presented. Also, the researcher has demonstrated how to provide 

bandwidth guarantees with OpenFlow’s meter function by carrying out experiments. 

The results of the experiments confirmed that the meter function of OpenFlow can 

provide bandwidth guarantee effectively in high QoS network and we can adapt the 

DSCP values for traffic classification to make QoS control easier.  

However, the QT program is configured with OVS. Since OVS does not support 

the full capability of the OpenFlow meter function, DSCP remark, it works just like a 

traffic shaper at the ingress port. Therefore, the use of the OpenFlow meter function is 

left as future research. In the later experiment, the queue mechanism will just be used to 

provide a bandwidth guarantee. 

7.2  Preliminary Experiments with Open Vswitch (OVS) 

Before the evaluation of the proposed approach (QT), this section exploits a 

bandwidth guaranteeing system with OpenFlow protocol in the SDN network with 

OpenVswitch. Since the bandwidth is the key component for offering QoS, the focus is 

only on bandwidth guarantees in this experiment. Since the OVS cannot fully support 

the metering feature, it will only explore the egress queues defined in the OF1.3 

specifications. This experiment implements and verifies QoS control with OpenFlow’s 

queuing techniques HTB over SDN. It describes the results of the experiments in the 

SDN emulation network environment.  

In this study, HTB queuing is used to provide the bandwidth guarantee for the 

QoS flows. The HTB qdisc allows arranging traffic classes in a multi-layered 

hierarchical tree. In the proposed approach, two layers hierarchical tree is used where 

the root node (in the first layer) represents the parent class for all kinds of traffic. The 

root node is configured as soon as a switch connects to the controller. The maximum 

rate and minimum rate for the root class are both equal to the link speed. Typically, the 

maximum rate for the class is equal to the root (link speed) unless obviously stated 

otherwise in the request. 
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7.2.1  Experimental Design 

The network topology is implemented by using python script in the Mininet 

emulator. Figure 7.9 shows the simulated network topology for the experiment. The 

implementation of the queue mechanism is demonstrated with simple linear network 

topology which consists of two switches and four hosts. The Open Virtual Switches 

(OVS) are used in the network topology. All the network links between OVS switches 

have been set to 100 Mbps, and the capacity of the output ports in all the OVS switches 

are also100 Mbps. Hosts h1,h2, and h3 are traffic senders via OVS switch S1 and h4 is 

the traffic receivers via OVS switch S2. OVS switches S2 and S4 are the intermediate 

switches in the prototype.  

 

Figure 7.9 Linear Network Topology 

In the first scenario, testing starts all the flows at the same time in the best effort 

fashion with bandwidth limitation. Traffic flow is set as shown in Table 7.5. In order to 

abstract simulations, the queue are created with predefined bandwidth allocation in S1. 

In S1, every port has three different level queues and different QoS parameters 

(minimum bandwidth) are configured for those queues. All the incoming packets to S1 

are assigned to one of these queues before forwarding to the destination. Table 7.6 shows 

the bandwidth allocation with queue setting. 

Table 7.5 Network Experiment Flows Information 

Flow ID Source- Destination Destination Port Protocol Traffic (Mbps) 

Flow 1 H2 - H1 1111 UDP 100 

Flow 2 H3 - H1 2222 UDP 100 

Flow 3 H4 - H1 3333 UDP 100 
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Table 7.6 Queue Configurations Setting 

 

7.2.2  Evaluation Results 

Figure 7.10 shows the created network topology information in mininet. 

Figure 7.10 Created Network Topology 

Figure 7.11 shows the throughput results according to the predefined bandwidth 

allocation for all flows.   

Figure 7.11 Throughput Testing with Iperf Utility 

In the beginning, the H1 is sending to H4. The throughput is around 58 Mbps 

since the flow H1-H4 enqueued to q2 which has 60 Mbps as the maximum queue size. 

After 10 seconds later, we generate H2 flow for 10 seconds. When H2 starts to send 

traffic to H4, the throughput of flow H1-H4 drops immediately to 600 Kbps as shown 

in Figure 7.12. This is because the flow H2-H4 enqueued to q1 which gave 20 Mbps as 

the minimum bandwidth upmost to the link capacity as the maximum bandwidth. 

Therefore, the throughput of the H2-H4 is around 96.6 Mbps. After 10 seconds later, H2 

Queue ID Max-Min Rates (Mbps) QoS ID DSCP value 

0 10 (Max) 1 0 

1 30 (Min) 2 10 

2 60 (Max) 3 12 
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flow is finished and then start H3 to H4. The throughput of H1-H4 will not be affected 

by H3-H4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.12  Iperf Throughput Results Shown in the Server Site H4 

From these two experiments, the OpenFlow-Queueing mechanism improves 

QoS by providing a bandwidth guarantee for the high priority traffic is confirmed. But 

Specification of OpenFlow is not finished to fully support QoS implementation in the 

current state. For example, OpenFlow Queues are not a mandatory part of the 

specification and managing OpenFlow Queues is not handled by OpenFlow Protocol. 

As a future work, investigating and evaluating further QoS mechanisms in SDN by using 

queue statistic and OpenFlow meter is still is needed. Moreover, the numbers and 

priority of the Queues are vendors dependent on the current network. Therefore, for the 

proposed approach (QT), (1:3:6) ratio of the link bandwidth will be set as a reasonable 

amount of bandwidth for the testing purposed in the below experiments. 

7.3  Experimental Design for the Proposed Approach (QT) 

This section exploits the prototype implementation and demonstration of the 

proposed resource allocation scheme in the different network topology. In the test 

environment, the SDN controller obtains the global network information and status by 
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periodically monitoring the network condition. The controller estimates the link 

bandwidth utilization and identifies whether the links are bottlenecks or not. If a 

bottleneck link is detected, the controller chooses one or more highest priority flows to 

reroute to the alternative path. The data traffic is divided into three QoS classes. One is 

the traffic that does not have QoS requirements (called best-effort flows) and the other 

two are the traffic that has one or more QoS requirements such as bandwidth, delay, 

jitter or packet loss ratio (called critical flows or QoS flows). An emulated OpenFlow 

environment is configured and used to validate the proposed solution by using a Mininet 

emulator. The Ryu controller is used as an SDN remote controller in the control plane 

of the OVS for the proposed system.  

In order to allocate an appropriate route for each traffic, it is assumed that 

network users register their preferences of QoS demands to the controller. The possible 

options for preferences QoS demands are bandwidth, delay, and default (best-effort). 

The controller maintains the registered information and finds the most feasible path for 

each QoS demand. In the experiment, the delay demand flow has the highest priority 

flow; the bandwidth demand flow has the medium priority flow and leaving the default 

flow as the lowest priority flow. For the bandwidth demand flow, the controller finds 

the maximum bandwidth path to improve the performance of the flow throughput. In 

order to minimize the flow delay, the controller estimate and choose the minimum delay 

paths for the minimum delay demand flow if the link bandwidth is enough for it.  

To limit the maximum, minimum traffic rates for different flows, three different 

queues are set with different rates for all the interfaces of the switches. Queue 

configuration setting with specific flow type which is used throughout the whole 

experiments is shown in Table 7.7.  

Table 7.7 Queue Configurations for Experiment 

QoS Class QoS priority Queue Max-rate Min-rate 

Delay High q1 - 3Mbps 

Bandwidth Medium q2 6 Mbps - 

BE Low q0 1 Mbps - 
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Queue configuration setting and queue mapping with specific flow types are 

shown in Table 7.8. The example command to create the queues is shown below. 

 
 

For all the experiments, that the bandwidth proportion of the three priority 

queues is assumed 1:3:6, for simplicity,  follow the authors used in [61]. If the flow 

request exceeds the available bandwidth which is defined by the queue scheduling 

module to serve for this specific type of flow, the service will not be guaranteed. The 

flow priority for the bandwidth demand flow is set as a higher priority than minimum 

delay demand flow. Since the queue priority of the minimum delay demand flow is the 

highest, it will affect all other queues and flows. Therefore, the routing module will set 

the highest flow priority to bandwidth demand flow in order to prevent service 

degradation too much because of the priority queue. Cross-traffic flow is a simple best-

effort flow and it has the lowest priority. The cross-traffic is generated to change the 

congestion level for the demonstration purpose. The routing module will calculate the 

new path to reroute the high priority flow when the network is highly congested. 

7.3.1  Experiment 1: Simple Network Topology 

To test the fundamental work of delay estimation module and QoS routing 

approach, a simple network topology is used.  An emulated OpenFlow environment is 

configured and used to validate the proposed solution by using a Mininet emulator. The 

Ryu controller is used as an SDN remote controller in the control plane of the OVS for 

the proposed system.  

7.3.1.1 Experimental Setup 

To check the effectiveness of the proposed approach (QT), an environment is 

built as shown in Figure 7.13. The emulation was conducted by using the network 

topology including one controller, four switches, and seven hosts as shown in Figure 

7.13. Bandwidths of all the links were limited to 100Mbps for testing purposes. In 
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accordance with the topology in Figure 7.13, we have three clients, h1, h2, and h3 with 

four servers h4, h5, h6, and h7.  

 

Figure 7.13 Simple Network Topology with Link Delay Parameter 

In order to simulate the UDP traffic, the DITG network test tool is customized 

and seven flows are generated. To observe the flow performance for the proposed 

scheme, two minimum delay demand flows, two bandwidth demand flows and three 

best_effort traffic flows are used with various packet sizes and rates. The minimum 

bandwidth request ratios for both QoS flows and cross-traffic are shown in Table 7.8. 

Table 7.8 Network Experiment Flows for Simple Network Topology 

Flow id Source- Destination Packet rate (pps) Packet size (Bps) Time (sec.) Type 

1 
h1-h4 

VoIP - 60 UDP 

2 
h1-h6 

3500 (Video) 1024 60 UDP 

3 
h2-h5 

1000 (Haptic) 128 60 UDP 

4 
h2-h7 

3000 (BE) 1024 60 UDP 

5 
h3-h6 

3000 (Video) 1024 60 UDP 

6 
h3-h7 

2500 (BE) 1024 60 UDP 

7 h3-h8 Telnet - 60 TCP 
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The host pair (h1-h4) means the traffic from h1 to h4 and it is denoted as 

minimum delay demand flow (VoIP). The host pair (h1-h6) means the traffic from h1 

to h6 and it is denoted as bandwidth demand flow. Then the host pair (h2-h5) means the 

traffic from h2 to h5 and it denoted as haptic traffic.  

To limit the maximum and minimum traffic rates for different flows, we set three 

different queues with different rates for all the egress interfaces of s1, s2, and s4. For 

this experiment, q0 has with the maximum bandwidth (1 Mbps) for the default demand 

flow and q1 has the minimum bandwidth (3 Mbps) for the minimum delay demand flow. 

Then, q2 is configured with a large maximum bandwidth (6 Mbps) for the bandwidth 

demand flow. 

After setting policies in all the intermediate switches, the two flows from client 

h1 is sent simultaneously at time zero for 60 seconds. After five seconds later, the other 

two flows from h2 is sent for 60 seconds while the lest traffic flows from the h3 is start 

at another 5 seconds later for 60 seconds.  

According to the prototype network topology, there are three possible traveling 

paths between traffic senders and traffic receivers. 

First Path: s1 - s3 

Second Path: s1 - s2 - s3 

Third Path: s1 - s4 - s3 

According to the link delay setting, the first flow from client h1 to h4 will select 

the second path (s1 - s2 - s3) which has the minimum delay and reserved the user’s 

requested bandwidth for it. In the initial stage, there is no other flow is allocated on the 

network link, the second flow from client h1 to h5 will select the first path (s1-s3) since 

the first path has the shortest length. After 5 seconds, h2 requests for the two different 

flows. The first one from client h2 to h5 will select the minimum delay path among these 

three possible paths since it is the minimum delay demand flow type. Then, the left flow 

from client h2 selected the path with to have maximum available bandwidth for it. After 

10 seconds later from the most first generated flow, the client h3 request three types of 

traffic flows and paths are chosen for them based on their demand QoS types. The link 

will be defined as a bottleneck when the total reserved bandwidth over a link is exceeded 

then the predefined threshold (80%) [65]. When the bottleneck link is detected, the 
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highest priority flow will reroute to other best path in order to present bandwidth 

starvation and packet loss rate for the bandwidth demand flow.  

7.3.1.2 Evaluation Results 

The goal of this experiment is to test the fundamental work of the delay 

estimation module and the QoS routing module. The performance of the proposed 

approach (QT) will measures with all of the QoS parameters as the researcher already 

mentions in section 6.6. Then,  the comparison of the experimental results is made by 

using the proposed scheme with the traditional shortest-path routing scheme and 

multipath routing schemes. The throughput and packet loss is measured for all traffic 

flows. The average throughput for both QoS flows types and Best-effort flows types are 

shown in Figures 7.14 (a), 7.14 (b), respectively.  

 

(a) Average Throughput of the QoS flows       (b) Average Throughput of BE flows 

Figure 7.14  The Average Throughput of the Experiment on Simple Network Topology 

According to Figure 7.14, the traditional single path scheme has minimum 

throughput performance than the other two schemes. This is the consequence of using 

always the same shortest path (s1, s3) for routing. In Figure 7.14(a), it can be seen that 

the throughput of network flows in both multipath and the proposed approach (QT) have 

a high throughput rate than single path routing. This is because all the flows were routed 

to all the available paths instead of sharing a single path to route flows from the sources 

to the destinations in both approaches. 
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(a) Packet Loss Rate of the QoS flows       (b) Packet Loss Rate of BE flows 

Figure 7.15  Packet Loss Rate of the Experiment on Simple Network Topology 

The packet loss rate of the three approaches for each flow is shown in Figures 7.15. 

According to the experiment results, the proposed approach (QT) has a zero or nearly 

zero packet loss rate for all traffic. Figure 7.15, the packet loss rate is high in a traditional 

single-path routing scheme. It is observed that the packet loss rate of our proposed 

scheme is less than those of the other two schemes. Although multipath have some 

packet loss rate of approximately 1 % in each flow, it can be acceptable and neglectable. 

 

 

(a) Average Delay of the QoS flows       (b) Average Delay of BE flows 

Figure 7.16  Delay of the Experiment on Simple Network Topology 

From Figure 7.16, it can be seen that the delay performance of the proposed 

approach (QT) for all the flows is less than both single path and multipath routing 

schemes. From the experiment results, it is observed that the proposed approach (QT) 

works well and provides better performance in terms of packet loss rate for the QoS 
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traffics. Later, the performance of the QoS routing with large network topology will 

evaluate. 

This experiment focused on the fundamental work of the proposed approach 

(QT) in simple network topology by using the queuing technique. The goal is to improve 

the link utilization while reducing the packets loss rate as the QoS factor in the overall 

network. To realize this goal, the proposed approach (QT) tries to allocate the network 

traffic dynamically by using the available bandwidth which is provided from the 

network monitoring module. The results of the experiments showed that the proposed 

approach (QT) achieves better performance in terms of throughput, end-to-end delay 

and packet loss rate than that of traditional shortest-path and multipath routing. 

7.3.2  Experiment 2: Abilene Network Topology 

For testing the QoS routing module, Mininet is used to create the network 

topology. Open vSwitch is chosen due to its flexibility and good support for OpenFlow 

switch specifications. The topology was set up based on Abilene core topology in 

Mininet OpenFlow network with 1 controller and 11 switches as shown in Figure 7.17. 

DITG was used as a testing tool to generate UDP data streams in their simulation. 

7.3.2.1 Experimental setup 

To test the proposed QoS routing module, a network topology with 11 switches 

(Open vSwitch) and 8 hosts is created in Mininet. The topology is shown in Figure 7.17. 

The bandwidth of the links between all switches is set to 100 Mbps. 

 

Figure 7.17 Abilene Network Topology  
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After that, 9 flows are generated using DITG. Five of these flows were critical 

flows which include three minimum delay demand flows and two bandwidth flows. 

Table 7.9 shows the list of flows in this experiment. Using Python script, we started the 

Mininet topology and then generated the flows in the order shown in the below table. 

 Table 7.9 Network Experiment Flows for Abilene Network Topology 

Flow id 
Source- 

Destination 
Type of Demand 

Packet rate 

(pps) 

Packet size 

(Bps) 

Time 

(sec.) 
Type 

1 h1-h4 Min-delay VoIP - 60 UDP 

2 h1-h6 Bandwidth demand 3500 1024 60 UDP 

3 h1-h8 BE 1000 1024 60 UDP 

4 h2-h5 Min-delay 1000 128 60 UDP 

5 h2-h6 Bandwidth demand 1000 1024 60 UDP 

6 h2-h7 BE 3000 1024 60 UDP 

7 h3-h4 Min-delay VoIP - 60 UDP 

8 h3-h7 BE 3000 1024 60 UDP 

9 h3-h8 BE 1000 1024 60 UDP 

 

At the beginning of the experiment, multiple (eight) flows were generated for 60 

seconds. Firstly, three types of different traffic flow from client h1 to different servers 

were generated and followed three other types of flows from client h2. Lastly, three 

flows from client h6 were generated. The average results were calculated based on 5 

running times. 

Firstly, the network controller needs to choose the monitoring time interval 

before starting the experiment. The proposed system needs to regularly query the 

switches to retrieve flow statistics using the equations described in section 5.2.1. Hence, 

the proposed system used the fixed polling method which may poll all the active flows 

after the fixed timeout expires. The available bandwidth is calculated by the network 

controller when the monitoring module receives the number of bytes sent and the 
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duration of each flow. However, frequently updating the flow information may increase 

the monitoring overhead.  

To examine the network polling interval, the network delay is extrapolated in 

this experiment. According to Figure 7.18, extrapolation gives fewer network delay 

results in 3 seconds for all traffic. But accuracy may largely depend based on how 

frequently the controller is polling the switches to get the network statistics and how 

dynamically the network traffic is changing. 

 

Figure 7.18 The Delay-based Extrapolation 

7.3.2.2 Evaluation results 

The performance of the proposed scheme was analyzed in terms of throughput 

and packet loss rate. A comparison between the proposed scheme, the traditional single-

path routing scheme, and the flow-based multipath routing scheme was made. The 

proposed scheme installed the priority flow rule reactively according to user demand. 

The throughput of the experiment is shown in Figure 7.19. 
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(a) Throughput of Minimum delay demand flows (b) Throughput of Bandwidth demand flows 

 

 

(c) Throughput of BE flows 

Figure 7.19 The Average Throughput of the Experiment on Abilene Network Topology 

According to the experiment results, as shown in Figure 7.19, the traditional 

single path scheme has worse throughput performance than the other two schemes in 

almost every flow. This is the consequence of using always the same shortest path for 

routing due to its sharing one single path. The throughput of the minimum delay demand 

flows is shown in Figure 7.19(a). Compared with Figure 7.19(b) and 7.19(c), the amount 

of throughput in the proposed approach (QT) is larger than the single path routing and 

multipath routing approach. Therefore, the results of the average throughput for all 

traffic flow is better in the proposed resource allocation scheme.  
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(a) Packet loss rate of Minimum delay demand flows (b) Packet loss rate of Bandwidth demand flows 
 

 

(c) Packet loss rate of BE flows 

Figure 7.20 The Packet Loss Rate of the Experiment on Abilene Network Topology 

Hence, the packet loss rate is also a QoS parameter which is widely used in the 

network area, we demonstrated the comparison of the packet loss rate in the two 

aforementioned schemes. The packet loss is unavoidable since the total requested 

bandwidth of the three types of flows is higher than the maximum available bandwidth 

of the links (100 Mbps). According to the results of Figure 7.20(a) (b), the total packet 

loss rates for the critical flows which included the minimum delay demand flows and 

bandwidth demand flows are clearly zero in the proposed (QT).  Therefore, the proposed 

allocation scheme can provide better performance in terms of packet loss rate for the 

QoS traffics. Moreover, the packet loss rate of the BE traffic is also less than both of 

Single Path and Multipath routing.   
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(a) Average Delay of Minimum delay demand flows  (b) Average Delay rate of Bandwidth demand flows 
 

 

(c) Average Delay rate of BE flows 

Figure 7.21 Average Delay Rate of the Experiment on Abilene Network Topology 

There are many measures to specify different aspects of QoS requirements. 

Delay is one of the most important parameters and used to measure the performance of 

the network. From the point of application perspective, the delay is very sensitive in 

some applications like VoIP and haptic, etc. Since the proposed approach (QT) tries to 

meet the delay factor for these types of traffic flows, the delay value will also measure.  

Figures 7.21 and 7.22 show the average delays and jitter of the three schemes for 

each flow, respectively. Figure 7.21 shows that the delay performance of our proposed 

scheme for all the flows is obviously less than both single path and multipath routing 

schemes. The comparison of the jitter value is described in Figure 7.22. According to 

the results of Figure 7.21 and 7.22, the researcher can conclude that the proposed 

approach (QT) provides the low delay variation as the QoS factors for the minimum 

delay demand flows. 
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(a) Jitter of Minimum delay demand flows   (b) Jitter of Bandwidth demand flows 
 

 

(c) Average Delay rate of BE flows 

Figure 7.22 Jitter of the Experiment on Abilene Network Topology 

The focus of this experiment is on providing better service for QoS flows based 

on the user demand, by dynamically setting up forwarding paths in the data plane. To 

that end, the control program will monitor the status of the network and direct critical 

flows over a better path by installing OpenFlow rules on the switches. A QoS routing 

module is developed and implemented on the controller. 

The performance evaluation shows that the proposed approach (QT) can 

significantly improve the throughput and reduce the delay value obtained by the QoS 

flows, compared with the shortest path routing and multipath routing used in current 

networks. Moreover, the proposed approach (QT) can provide better performance in 

terms of packet loss rate for the QoS traffics. 
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7.3.3  Experiment 3: Fat-tree Network Topology 

A “fat-tree” network is a tree with hosts at the leaves and increasing capacity 

between switches forming the trunk. These trees are useful because they allow an 

impressive number of hosts to be connected. It is common to add some diversity of 

connections to add robustness. This is the norm of datacenter and campus design, with 

parts of the tree often named Core, Aggregation and Access layers. The escalating 

bandwidth towards the core makes this design unaffordable for networks that carry a lot 

of traffic. Testbed setup is introduced in session 7.3.3.1 and results discussion is 

described in the next subsection. 

7.3.3.1 Experimental Setup 

 

Figure 7.23 Fat-tree Network Topology 

To check the effectiveness of the proposed approach (QT) in the data center 

network, fat-tree network topology was built as shown in Figure 7.23 . and made a 

performance testing by comparing it with the famous Hedera, the traffic scheduling 

approach in data center network. Hence, Hedera can only be used in data center network 

topology, the proposed approach (QT) try to support not only datacenter but also various 

network topology. The following network traffic flows are generated as shown in Table 

7.10 to measure and examine if the proposed approach (QT) can be also used in the 

datacenter network. 
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Table 7.10 Network Experiment Flows for Fat-tree Network Topology 

Flow 

id 

Source- 

Destination 

Type of Demand Packet rate 

(pps) 

Packet 

size (Bps) 

Time 

(sec.) 
Type 

1 h1-h9 BE 1000 1024 60 UDP 

2 h2-h10 Min-delay VoIP - 60 UDP 

3 h3-h11 BE 1000 1024 60 UDP 

4 h4-h12 Min-delay 1000 (Haptic) 128 60 UDP 

5 h5-h13 Bandwidth demand 1500 1024 60 UDP 

6 h6-h14 BE 1000 1024 60 UDP 

7 h7-h15 BE 1000 1024 60 UDP 

8 h8-h16 Bandwidth demand 1500 1024 60 UDP 

 

At the beginning of the experiments, all the above eight flows, as expressed in 

Table 7.10.  are generated simultaneously one after another. 

7.3.3.2 Evaluation Results 

 

(a) Average Throughput of the QoS flows       (b) Average Throughput of BE flows 

Figure 7.24 Throughput of the Experiment on Fattree Network Topology 

The throughput comparison of the experiment is depicted in Figure 7.24. Figure 

7.24 (a) shows that 12% for the flow-id 2 (VoIP), 7% for the flow-id 4 (Haptic), and 57 

% for the flow-id 5(video) throughput improvement as compared with Hedera for this 

experiment.  According to the experiment results, the proposed approach (QT) can 

handle all of the generated flows (eight flows) which are come in the simultaneous form. 

Hence, Hedera can accept only seven flows in these conditions. This means that the 
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proposed approach (QT) has better link utilization and effective allocation, QT considers 

the flow priority and link utilization in flow reroute while Hedera only depends on link 

utilization. On the other hand, Figure 7.25 depicts the packet loss rate for this 

experiment. The number of packet loss rates in the proposed approach (QT) is obviously 

smaller than the Hedera approach. Therefore, the result of the average packet loss rate 

of the overall traffic flows is better in the proposed resource allocation scheme.  

 

 

(a) Packets loss rate of QoS flows       (b) Packet loss rate of BE flows 

Figure 7.25 Packet Loss Rate of the Experiment on Fattree Network Topology 

The average delay for the QoS flows and the BE flows can be seen that in Figure 

7.26. According to the graph of Figure 7.26 (a), the proposed approach (QT) has the low 

delay value compared with the Hedera for all the QoS traffic flows. However, it can be 

seen that there is one of the flow showing the high delay value than the Hedera in BE 

flows in Figure 7.26 (b) and this may happen when the traffic are come simultaneously 

enter the network, the controller may allocate one or more flows in the same route before 

updating the link utilization information.  

 

 

(a) Average Delay of QoS flows       (b) Average Delay rate of BE flows 

Figure 7.26 Delay of the Experiment on Fattree Network Topology 
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In recent years there has been an increasingly growing interest in the data center 

and cloud computing environment. This is motivated by the need for efficient utilization 

of computing resources and reducing costs. Such infrastructure usually hosts various 

kinds of applications for different clients. Each application/client has its own set of 

requirements, typically defined in their Service Level Agreements (SLAs). Quality-of-

Service (QoS) requirements include end-to-end bandwidth and latency among other 

attributes, as we discussed in previous chapters. Several efforts have been made to 

address the challenges of providing QoS to various types of network applications in 

different environments using various protocols and techniques. QoS provisioning and 

monitoring in the cloud-based data center network are even more difficult due to the 

complexity of its shared infrastructure environment.  

The proposed approach (QT) try to meet the user demand QoS factors of the 

flows and confirmed that the required QoS is guaranteed for high priority flows in the 

data center network.  The experimental results showed that the proposed approach (QT) 

has better results than the existing flow scheduling approach, Hedera in terms of 

throughput, packet loss rate, and average end-to-end delay.  

7.4  Chapter Summary 

In this experiment, the end-to-end dynamic bandwidth allocation scheme based 

on QoS demand in SDN is presented and confirmed that the QoS is guaranteed for high 

priority flows. When multiple flows arrive simultaneously, allocating network flows 

over the same link happen due to the periodic flow monitoring. Consequently, the flow 

rerouting to the alternative path is essential to provide the QoS performance guarantee. 

The congestion handling module in QT used the flow priority to reroute started from the 

high priority flows in order to provide high throughput and QoS guarantee. The 

experimental results showed that the proposed scheme outperforms the existing single-

path routing, multipath routing and Hedera in terms of throughput, packet loss rate, and 

average end-to-end delay.  
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CHAPTER 8 

 CONCLUSION AND FUTURE WORK 

In this final chapter, all the work in this thesis is concluded in brief and the future 

work is explained that may improve the methods of the system in the future study. 

8.1 Thesis Summary 

This section summarized the research work in the previous chapters in order to 

better understanding the proposed system. 

Chapter 1 is the preamble of the research work. In Chapter 1, a brief background 

theory related to the SDN is introduced and listed the research problems firstly. Then,  

research motivations of the thesis that lead to the necessity of the research work are 

explained. Finally, the objectives and contributions of the proposed system which are a 

significant part of the thesis are presented. 

Chapter 2 summarizes some fundamental research works in the major areas 

relating to the resourced allocation as well as QoS and the traffic engineering solutions 

in SDN environments. 

In the next chapter, Chapter 3 is about the theoretical background of the proposed 

system. It initially outlines the SDN reference architecture and its backend theory and 

technology. This chapter helps the reader to a better understanding of the SDN 

environment and its workflows.  

Chapter 4 presents the end-to-end QoS from the origin of the IP-network start to 

a current SDN environment. The goal of this chapter is to integrate the theory findings 

across SND, TE, QoS and resource allocation approaches.  

Chapter 5 covers the proposed end-to-end dynamic bandwidth resource 

allocation and a detailed explanation of its components. The chapter begins with the 

comprehensive descriptions of the system architecture for the proposed resource 

allocation scheme and its components are discussed. 

In Chapter 6, the conceptual design of the proposed system and its 

implementation are presented. Then, the explanation of detail design requirements are 

discussed. 
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Chapter 7 presents the various experiments with the examples of network 

topologies to give the reader an understanding of how the platform operates. In this 

chapter, the bandwidth guaranteeing system with OpenFlow protocol is initially 

explored by using software switches namely CPqD and OVS. After that, the prototype 

implementation and the demonstration of the proposed system in different network 

topology is presented. Then, the analysis of the proposed system and evaluation results 

are discussed. 

8.2 Conclusion 

With global Internet traffic growing by an estimated 22% per year, the demand 

for bandwidth is fast outstripping providers' best efforts to supply it. Providing higher 

bandwidth is just not enough because that involves a higher cost which both the 

providers and the consumers cannot afford.  Therefore, to handle the issue with limited 

costs, the best we can do is control the bandwidth with which the data are being sent 

from the source to the desired destination. The network administrator can eliminate the 

paths that have lower bandwidth  (bottleneck)  and select a  path with the highest 

bottleneck bandwidth using an existing algorithm.  Identifying network bottlenecks is 

very useful for end-users and service providers. Unfortunately, it is very hard to identify 

the location of bottlenecks unless one has access to link load information for all the 

relevant links.  

Moreover, a number of today’s network applications such as media streaming 

and cloud services require steady network resources with strict Quality of Service (QoS) 

requirements.  In general, network administrators are able to manage their resources 

more efficiently without provisioning the network successively by using the QoS control 

mechanism and the related notion of traffic engineering. It is not easy to make sure that 

efficient bandwidth allocation is done in order to provide high QoS for each data flow. 

If congestion occurs in a network, packets are simply dropped instead of being buffered 

or sent out after idle periods. There is no bandwidth guarantee about flows and their 

rates without QoS control. A network administrator can implement the traffic policing 

where flows can only influence each other based on predetermined parameters with the 

help of a QoS control mechanism. Moreover, the QoS requirement and importance may 

vary according to service type, price and user’s requirement. Also, the QoS provisioning 

mechanism of a network depends on the user’s requirement, availability of resources, 
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price, service types etc. Providing high QoS in existing network architectures is a long-

standing and still open issue in the networking area. 

The emerging networking technology, SDN is introduced to address this issue 

efficiently for modern network architectures like 5G. In SDN, OpenFlow provides flow 

level programmability to program the network according to QoS requirements of the 

applications. Since SDN and OpenFlow enable networks to be more controllable and 

intelligent with the help of programmability, network administrators no longer have to 

leave networks unmanaged. Currently, OpenFlow is supported for QoS in the SDN 

environment by two features, namely the queue and meter. A queue is an egress packet 

queuing mechanism in the OpenFlow switch port. Although OpenFlow supports the 

queue features, it does not handle queue management; it is just able to query queue 

statistics from the switch. Therefore, the queuing feature of OpenFlow is a property of 

a switch port [71].  

In any given network, usually, the overall bandwidth is competitively shared 

among various application traffic. According to the traditional single-path routing 

scheme, all of the traffic share the same link and compete over the network link 

bandwidth. Congestion happens when the traffic load exceeds the network link 

bandwidth. If congestion occurs in the network, the network will face the packet loss. 

When the packet loss exists on the network, the users will experience large delays and 

service degradation. However, there may be more than one single path to reach a 

particular destination, and some paths may be underutilized. Suitable path selection from 

among the multiple paths to optimize the overall network performance is one of the 

critical issues in the network area. Another major challenge is the dynamic link 

bandwidth allocation with congestion management that can support the QoS 

requirements for each traffic and alleviate the service degradation for high priority 

flows.  

To solve these problems, an end-to-end dynamic bandwidth resource allocation 

scheme based on QoS demand is proposed in SDN to support the QoS requirements for 

an individual flow. SDN is an emerging architecture that may play a critical role in future 

network architectures. SDN can provide a global network view of the network resources 

and their performance indicators such as link utilization and the network congestion 

level which can be used in network resource allocation. By using the benefits of SDN, 
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the controller makes the routing decision based on the global view of the network 

resources in an SDN network.  

  In the proposed QT, the flow priority and the dynamic characteristics of the 

network link are considered in order to provide the high QoS performance for high 

priority flows. In addition, we calculate feasible paths for all the traffics that can satisfy 

the user bandwidth demands. In order to mitigate the flow performance degradation and 

congestion, the controller checks the link bandwidths by reserving the required 

bandwidths for incoming flows. If the link bandwidth is smaller than the predefined 

threshold value, the bottleneck link will be defined and the highest priority flow from 

the bottleneck link will be rerouted to an alternative one that has enough bandwidth for 

the rerouting flow. Furthermore, to improve the performance and to ensure the QoS of 

the high priority flows, a queue mechanism provided by the OpenFlow at the data link 

level is used. The goal is to improve the QoS performance of the high priority flows 

while providing the required bandwidth resources and less packet loss rate as QoS 

factors in the overall network. 

According to our preliminary experiments, the  OpenFlow Queueing  mechanism  

improves the QoS by providing a bandwidth guarantee for the high priority  traffic  is 

confirmed. Therfore, the  fundamental  work  of  the  proposed  approach (QT) in  simple 

network topology is evaluated by using the  queuing mechanism in our experiment 1 

(section 7.3.1). From this experiment, we can observe that  the proposed  approach (QT) 

works well and  provides  better performance in terms  of packet loss rate for the QoS 

flows. Later, the performance of the QoS routing with large network topology is 

evaluated in our experiment 2 (section 7.3.2). In this experiment 2, we analyse the 

network monitoring interval to query the statistics of the network from the switches. 

Accoding to our experiment, we suggested that the three seconds interval is the suitable 

choice for our testing with Abilene Network Topology. We found that the accuracy  may  

largely  vary  based  on  how frequently the controller is polling the switches to get the 

network statistics and how dynamically the network traffic is changing. In experiment 

3 (section 7.3.3), we compare with Hedera approach, the most popular flow allocation 

approach in the data center network. According to the experiment 3 (section 7.3.3) , the 

proposed QT outperforms 12% for the flow-id 2 (VoIP), 7% for the flow-id 4 (Haptic), 

and 57 % for the flow-id 5(video) in the throughput performance than Hedera. The 

proposed QT considers the flow priority and link utilization in flow rerouting whereas 
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Hedera only depends on link utilization.  Due to the evaluation reults, the proposed QT 

has better link utilization and effective allocation compare with Hedera approach and 

provide better performance for all QoS flows.   

8.3 Limitations and Future Work 

The resource allocation proposed in this thesis has used traffic engineering and 

predicted network states for routing decisions. Currently, the proposed system doesn’t 

provide capabilities for queue management due to the controller can only query some 

queue statistic and limited configuration parameters through the OpenFlow protocol. 

The trade-off between measurement overhead and real-time statistics should be 

carefully considered since the network is measured actively in every ‘n’ seconds to get 

the real-time update measurement result. Moreover, the LLDP protocol that the 

proposed system used to estimate the network dealy is not suitable for a large network. 

There we need to find a more suitable way to estimate the link delay for a large network. 

For the future work, more realistic techniques such as effective queue scheduling 

in the data plane and apply a metering feature of the OpenFlow protocol in the control 

plane should be implemented and investigated. The application-aware approach should 

be studied to allocate the bandwidth automatically by estimating the amount of the 

bandwidth resources that the flow requires in real-time. It should, therefore, be 

combined with admission control to protect the network from severe overload and end-

to-end flow control to achieve fairness. Furthermore, since different services are 

sensitive with respect to different QoS measures, a combined metric for route 

optimization should be investigated. There will be a plan to explore additional traffic 

engineering (TE) methods to ensure the QoS guarantee as well as larger platforms for 

the approach. 
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