

QoS-BASED TRAFFIC ENGINEERING IN SOFTWARE

DEFINED NETWORKING

NWE THAZIN

UNIVERSITY OF COMPUTER STUDIES, YANGON

November, 2019

QoS-based Traffic Engineering in Software Defined

Networking

Nwe Thazin

University of Computer Studies, Yangon

A thesis submitted to the University of Computer Studies, Yangon in partial

fulfilment of the requirements for the degree of

Doctor of Philosophy

November, 2019

Statement of Originality

I hereby certify that the work embodied in this thesis is the result of original

research and has not been submitted for a higher degree to any other University or

Institution.

…..…………………………… .…………........…………………………

Date Nwe Thazin

i

ACKNOWLEDGEMENTS

I would like to express my gratitude to all who get this deep and precious

research work done.

First of all, I would like to thank Ministry of Education for giving me the

opportunity to study PhD Course by providing support that allowed me to perform the

research in University of Computer Studies, Yangon, Myanmar.

Secondly, I especially thanks to Dr. Mie Mie Thet Thwin, Rector, the University

of Computer Studies, Yangon, for allowing me to develop this thesis and giving me

general guidance during the period of my study.

I would like to express my deepest gratitude to my supervisor, Professor.

Dr. Khine Moe Nwe, Course-coordinator of the Ph.D. 9th Batch, the University of

Computer Studies, Yangon, for her excellent guidance, for patience supervision,

motivation, and immense knowledge. Her guidance helped me in all the time of

research and writing of this thesis. My Ph.D. study experience could not be considered

as a complete one without her support.

Besides, I would also like to extend my special appreciation to Professor.

Dr. Yutaka Ishibashi, Nagora Institute of Technologies, for the continuous support of

my Ph.D. study and related research, and providing me with excellent ideas throughout

the study of this thesis.

I would like to express my respectful gratitude to all my teachers for not only

their insightful comments and encouragement but also for their challenging questions,

which give incentives to me to widen my research from various perspectives. My thanks

go to Daw Aye Aye Khine, Associate Professor, Department of English, for valuable

supports and editing my thesis from the language point of view.

I would like to express my sincere gratitude to Dr. Zin May Aye, Professor,

Head of Cisco Network Lab, the University of Computer Studies, Yangon, for her

caring, for the useful comments and advice, and insight which are invaluable to me. I

thank my fellow lab mates for the stimulating discussions, for the memorable time we

were working together before deadlines, and for all the fun we have had in the last five

years. I also thank all of my friends from the Ph.D.9th Batch for their co-operation and

encouragement. I am very grateful for everything they shared with me and helped me

to strive towards my goal.

ii

Last but not least, I would like to express special thanks to my family. Words

cannot express how grateful I am to my grand-mother, grand-father, and my little sister,

for all of the sacrifices that you have made on my behalf. They are always supportive

of me during my period of studies, especially for this Doctorate Course.

iii

ABSTRACT

Quality of Service (QoS) is the overall performance of a computer network,

particularly the performance seen by the users of the network. By managing the delay,

bandwidth, and packet loss parameters, it allows us to allocate our available resources

between applications in a reasonable way. In today's life, it is general that many

applications run at the same time. As a critical type of resource, bandwidth would be

shared without principle which leads to interference. Therefore, “important”

applications cannot get enough bandwidth to transmit data. To solve these problems,

the end-to-end bandwidth resource allocation scheme is proposed to support Quality of

Service (QoS) for various types of traffic based on the user QoS demand.

The main goal of this system is to provide high QoS performance for high

priority flows. In order to meet this goal, this system considers the flow priority and the

dynamic characteristics of the network. In addition, feasible paths are calculated for all

the traffic flows that can satisfy the user bandwidth demands. In order to mitigate the

flow performance degradation and congestion, the controller checks the link

bandwidths by reserving the required bandwidths for incoming flows. If the link

bandwidth is smaller than the predefined threshold value, the link is defined as the

bottleneck link and reroute the highest priority flow from the bottleneck link to an

alternative link that has enough bandwidth for the rerouting flow. Furthermore, to

improve the performance and to ensure the QoS of the high priority flows, a queue

mechanism is used which is provided by the OpenFlow at the data link level. This

research will try to accommodate as much traffic as possible, and study the effect of

routing on a rather general mix of QoS traffic types.

The effectiveness of the proposed scheme is described on the emulated SDN

network. The proposed scheme is compared with the conventional shortest path

scheme, multipath routing scheme in the various network topology. Furthermore, the

performance of the proposed scheme is compared with the popular flow scheduling

scheme Hedera in the data center network topology. The improvement of QoS traffic

type is quantified in terms of throughput, delay, jitter and packet loss rate, respectively.

Based on the experiments, the researcher observed that the proposed method

(QoS_based Traffic Engineering Approach) QT offers a significant improvement

compared to a static, traditional IP network and the multipath network environment by

iv

providing better performance in terms of packet loss rate for the QoS traffics and great

improvement in link utilization.

v

TABLES OF CONTENTS

ACKNOWLEDGEMENTS .. i

ABSTRACT .. iii

TABLES OF CONTENTS .. v

LIST OF FIGURE ... x

LIST OF TABLES ... xii

LIST OF EQUATIONS .. xiii

INTRODUCTION ... 1

1.1 Problem Statement .. 3

1.2 Motivation of the Research .. 4

1.3 Objectives of the Research .. 6

1.4 Contributions of the Research .. 6

1.5 Organization of the Research ... 7

LITERTATURE REVIEW AND RELATED WORK... 9

2.1 Traditional Network .. 9

2.1.1 Challenges of Traditional Networks .. 10

2.2 Software Defined Networking .. 11

2.2.1 Differences of Traditional Networking and SDN 11

2.2.2 Advantages of SDN .. 13

2.3 SDN Applications Areas ... 14

2.3.1 Traffic Engineering ... 14

2.3.2 Network Resource Optimization ... 16

2.3.3 Data Centers and Cloud Environments 17

2.3.4 Campus and High Speed Networks ... 17

2.3.5 Residential Networks .. 18

2.3.6 Wireless Communications ... 19

vi

2.4 Research Challenges.. 19

2.4.1 Application Performance ... 20

2.4.1.1 Application-awareness in SDN ... 20

2.4.1.2 Application Performance Monitoring.................................. 20

2.4.1.3 Video Streaming and Real-time Communication 21

2.4.2 Data Center Solutions and Resource Allocation......................... 22

2.4.3 QoS Routing and Path Establishment .. 23

2.4.4 Congestion Control ... 24

2.5 Literature Review .. 25

2.6 Chapter Summary .. 28

THEORETICAL BACKGROUND .. 29

3.1 SDN Reference Architecture ... 29

3.2 Southbound Interfaces and Protocols ... 31

3.2.1 OpenFlow ... 32

3.2.2 OpenFlow Flow Table ... 34

3.2.3 OpenFlow Messages Types ... 35

3.3 SDN Controller for the Control Plane .. 36

3.4 Software Switch for the Data Plane ... 37

3.4.1 Open vSwitch.. 37

3.4.2 OfSoftSwitch (CPqD) ... 38

3.5 Flow Removal and Eviction .. 39

3.6 Chapter Summary .. 39

END-TO-END QUALITY OF SERVICE .. 40

4.1 The Quality of Service... 40

4.2 Applications QoS .. 41

4.3 QoS Provisioning in Traditional Network .. 41

4.4 QoS Provisioning in Software-Defined Networking 42

vii

4.5 QoS Support in Different Versions of OpenFlow 43

4.5.1 Queues .. 43

4.5.2 OVSDB .. 44

4.5.3 Linux Traffic Control .. 45

4.5.4 Hierarchical Token Bucket (HTB) ... 46

4.5.5 Meter Tables ... 47

4.6 QoS in SDN Controllers .. 49

4.7 Chapter Summary .. 50

END-TO-END DYNAMIC BANDWIDTH RESOURCE ALLOCATION BASED

ON QOS DEMAND IN SDN ... 51

5.1 Architecture of Proposed Resource Allocation Scheme 51

5.1.1 Topology Discovery Module ... 52

5.1.2 Network Monitoring Module ... 53

5.1.3 Delay Estimation Module .. 54

5.1.4 QoS Routing Module ... 56

5.1.5 Congestion Handling Module .. 58

5.2 The Proposed End-To-End Dynamic Bandwidth Allocation Scheme ... 60

5.2.1 Bandwidth Allocation at Controller Level 61

5.2.2 Bandwidth Allocation at Switch Level 62

5.2.3 Module 1: Flow-based Routing ... 62

5.2.4 Module 2: Flow Rerouting .. 63

5.3 Chapter Summary .. 65

DESIGN AND IMPLEMENTATION OF THE PROPOSED SYSTEM 66

6.1 The Proposed End-To-End QoS Implementation 66

6.1.1 Class of QoS ... 66

6.1.2 Flow Requirements ... 68

6.1.4 Flow Priority ... 69

viii

6.1.5 Queue Implementation .. 69

6.1.6 Policy Setting .. 70

6.1.7 Forwarding Decision ... 72

6.2 Ryu Controller... 73

6.2.1 Ryu Libraries .. 74

6.2.2 OpenFlow Protocol and Controller .. 74

6.2.3 Managers and Core-processes ... 75

6.2.4 RYU Northbound API ... 75

6.2.5 RYU Applications ... 75

6.3 Mininet Network Emulator .. 76

6.3.1 Topology Elements ... 77

6.3.2 Command Used to Create Topology in Mininet 77

6.4 Traffic Generator and Measurement Tools... 78

6.4.1 Iperf .. 78

6.4.2 Wireshark ... 78

6.4.3 Distributed Internet Traffic Generator (DITG)........................... 79

6.5 The Test-bed Implementation with Mininet ... 80

6.6 QoS Measurement Parameters ... 83

6.7 Chapter Summary .. 84

EXPERIMENTAL RESULTS AND ANALYSIS .. 85

7.1 Preliminary Experiments with User-space Switches (CPqD)................ 85

7.1.1 Experimental Setup .. 86

7.1.2 Evaluation Results .. 87

7.1.2.1 Scenario 1: Without QoS Setting ... 87

7.1.2.2 Scenario 2: With QoS Setting .. 88

7.2 Preliminary Experiments with Open Vswitch (OVS) 92

7.2.1 Experimental Design .. 93

ix

7.2.2 Evaluation Results .. 94

7.3 Experimental Design for the Proposed Approach (QT) 95

7.3.1 Experiment 1 : Simple Network Topology 97

7.3.1.1 Experimental Setup ... 97

7.3.1.2 Evaluation Results .. 100

7.3.2 Experiment 2 : Abilene Newtwork Topology 102

7.3.2.1 Experimental setup.. 102

7.3.2.2 Evaluation results .. 104

7.3.3 Experiment 3 : Fattree Network Topology 109

7.3.3.1 Experimental Setup ... 109

7.3.3.2 Evaluation Results .. 110

7.4 Chapter Summary .. 112

CONCLUSION AND FUTURE WORK .. 113

8.1 Thesis Summary .. 113

8.2 Conclusion .. 114

8.3 Future Work .. 117

x

LIST OF FIGURE

Figure 2.1 Architecture of Traditional Network and SDN Network 12

Figure 2.2 Traffic Engineering Architecture in SDN .. 15

Figure 2.3 The components of Traffic Engineering .. 15

Figure 3.1 Simplified SDN Scheme ... 31

Figure 3.2 OpenFlow Architecture ... 32

Figure 3.3 Flow Entry Scheme ... 33

Figure 3.4 Simple Open vSwitch Architecture ... 38

Figure 4.1 Sample HTB Class Hierarchy ... 46

Figure 4.2 Queue Implementation Example ... 47

Figure 5.1 Architecture of Proposed Resource Allocation System 51

Figure 5.2 Topology Discovery Module... 53

Figure 5.3 Network Monitoring Module .. 54

Figure 5.4 Delay Estimation Work Flow .. 55

Figure 5.5 Workflow to Start the Flow Rerouting .. 58

Figure 5.6 Hierarchy of QoS Routing .. 62

Figure 6.1 The Logical Policy Storage ... 72

Figure 6.2 Ryu Framework .. 73

Figure 6.3 Functional Architecture of Ryu Application .. 76

Figure 6.4 Simple Network Topology .. 80

Figure 6.5 Network Topology Created ... 82

Figure 6.6 Pingall Command Executed .. 82

Figure 7.1 Test-bed Environment ... 86

Figure 7.2 Flow Bandwidth Distribution Between All Data Flows 88

Figure 7.3 Flow Bandwidth Distribution Between Best-effort Flow and QoS-flow 1

(AF11) ... 89

Figure 7.4 Flow Bandwidth Distribution Between Best-effort Flow and QoS-flow 2

(AF12) ... 90

Figure 7.5 Flow Bandwidth Distribution Between QoS-flow 2 (AF12) and QoS-flow 2

(AF12) ... 90

Figure 7.6 Flow Bandwidth Distribution Between QoS-flows and Best-effort Flow . 90

Figure 7.7 Statistical Information of Queues in S1 ... 91

Figure 7.8 Statistic of Meter in S3 ... 91

xi

Figure 7.9 Linear Network Topology ... 93

Figure 7.10 Created Network Topology ... 94

Figure 7.11 Throughput Testing with Iperf Utility ... 94

Figure 7.12 Iperf Throughput Results Shown in the Server Site H4......................... 95

Figure 7.13 Simple Network Topology with Link Delay Parameter 98

Figure 7.14 The Average Throughput of the Experiment on Simple Network Topology

 .. 100

Figure 7.15 Packet Loss Rate of the Experiment on Simple Network Topology 101

Figure 7.16 Delay of the Experiment on Simple Network Topology 101

Figure 7.17 Abilene Network Topology ... 102

Figure 7.18 The Delay-based Extrapolation ... 104

Figure 7.19 The Average Throughput of the Experiment on Abilene Network Topology

 .. 105

Figure 7.20 The Packet Loss Rate of the Experiment on Abilene Network Topology

 .. 106

Figure 7.21 Average Delay Rate of the Experiment on Abilene Network Topology 107

Figure 7.22 Jitter of the Experiment on Abilene Network Topology....................... 108

Figure 7.23 Fattree Network Topology .. 109

Figure 7.24 Throughput of the Experiment on Fattree Network Topology.............. 110

Figure 7.25 Packet Loss Rate of the Experiment on Fattree Network Topology 111

Figure 7.26 Delay of the Experiment on Fattree Network Topology....................... 111

xii

LIST OF TABLES

Table 3.1 OpenFlow Flow Table Fields ... 35

Table 3.2 Common OpenFlow software switches... 37

Table 4.1 QoS related features in different OpenFlow versions. 43

Table 4.2 QoS related features in different OpenFlow controllers. 50

Table 5.1 Main notations. .. 60

Table 5.2 Outline of proposed scheme. .. 61

Table 6.1 Example QoS types and QoS requirement .. 67

Table 6.2 Available QoS classes .. 68

Table 6.3 Possible policy list. .. 71

Table 6.4 OpenFlow protocol messages and corresponding API of Ryu. 74

Table 6.5 Testbed Requirements. ... 80

Table 7.1 Network experiment flows for scenario 1 ... 87

Table 7.2 Queue configurations for experiment.. 88

Table 7.3 Meter band setting .. 89

Table 7.4 Flow entry information with meter ... 89

Table 7.5 Network experiment flows for scenario 1 ... 93

Table 7.6 Queue configurations setting .. 94

Table 7.7 Queue configurations for experiment.. 96

Table 7.8 Network experiment flows for simple network topology 98

Table 7.9 Network experiment flows for simple network topology 103

Table 7.10 Network experiment flows for fat-tree network topology 110

xiii

LIST OF EQUATIONS

Equation 5.1 …………………………………………………….…………..... 55

Equation 5.2 …………………………………………………………………... 55

Equation 5.3 …………………………………………………………………... 57

Equation 5.4 …………………………………………………………………... 64

1

CHAPTER 1

INTRODUCTION

With the rapid growth of network technologies, the development of the domain

is shifting from providing connectivity to providing a number of services and

applications with desirable quality and reliability. These applications and services have

different service features and their own quality demand. For example, telephony services

like VoIP need extremely bandwidth and delay-sensitive. The packet needs to reach its

destination before a specific delay threshold, otherwise, the service becomes useless for

the VoIP transmissions. Furthermore, the retransmission of lost packets is also worthless

for real-time applications. On the other hand, the data transfer applications like File

Transfer Protocol (FTP) services are more robust in packet loss than real-time

applications. Therefore, implementing a QoS-enable network becomes a very hard

challenge and it requires a significant effort to provide accessible performance for all

traffic types. In general, network providers offer Service-Level Agreements (SLAs) with

guarantees on different network performance metrics such as bandwidth and delay.

SLAs express the availability of the network function with percentage and provide the

required quality assurance of applications such as delay and/or packet loss.

Quality of Service (QoS) is defined by Cisco [104] as “the capability of a

network to provide better service to selected network traffic over various technologies

with the primary goal to provide priority including dedicated bandwidth, controlled jitter

and latency, and improved loss characteristics.” QoS deals with providing end-to-end

guarantees to the users. There are many ways in which such assurances can be obtained.

One can use one or any combinations of these technologies to implement QoS. A

network operating system may exploit various services like resource reservation and

allocation, prioritized scheduling, queue management, routing, etc.

The traditional network was not initially designed with QoS in mind, it was later

supplemented by many techniques to achieve the desired performance tuning. These

techniques allowed the Internet Service Providers (ISP) to fine-tune the internet as

required. However, the traditional internet is facing new challenges with every new

emerging technology. The increasing number of devices, the growing volume and

velocity of traffic, big data and cloud computing are some of the problems that the

traditional internet is finding hard to cater to.

2

Software Defined Networking (SDN) provides a solution to these challenges by

making the internet flexible and programmable. SDN [97] is an emerging architecture

that may play a critical role in future network architectures. SDN can provide a global

network view of the network resources and their performance indicators such as link

utilization and the network congestion level. The main idea of SDN is to separate the

network intelligence from the forwarding device and logically place it in the external

entity which is called the controller. OpenFlow protocol (OF) [71] is used to exchange

data between controller and forwarding devices in SDN architecture. In the data plane,

the simple packet forwarding elements match the incoming flows in the flow table and

apply the specified action on the matching flows. The control plane lies above the data

plane, and this is where all the routing decisions are made. Once a decision is reached

for a “family” of flow, it is updated to all the flow tables, thus saving time for subsequent

flows. In other words, the networking decisions are now taken in software rather than

hardware. Due to its flexibility and responsive to rapid changes, SDN is proper for an

emerging technology like 5G and cloud data center network.

As more and more vendors are accepting SDN as the new networking paradigm,

the demands on SDN is changing with time. One of the biggest advantages of SDN is

its vendor-agnostic and open-source nature which has led to rapid acceptance and

involvement of research communities worldwide, both in academia as well as the

industry. The primary solution that SDN provided over the traditional internet was that

of flexibility and programmability. This means that, for SDN to be deployed on the

worldwide internet, it needs to support fine-grained QoS, equivalent to what is possible

in the traditional internet, if not better. By having strong QoS control included in SDN,

the future Internet might have native QoS support.

This chapter highlights prominent research challenges in SDN and presents the

objectives of the present research along with a description of the research structure. The

remainder of this chapter is organized as follows. Section 1.1 introduces the problem

statement in SDN. The motivation of the research is highlighted in section 1.2. In section

1.3, the objectives of the research are presented. Section 1.4 describes the research

contributions. The organization of this thesis is presented in section 1.5.

3

1.1 Problem Statement

According to the traditional single-path routing scheme, all of the traffic shares

the same link and compete over the network link bandwidth. Congestion happens when

the traffic load exceeds the network link bandwidth, and it can seriously impact on the

Quality of Service (QoS) parameters of the applications. For example, when the network

faced packet loss as a consequence of congestion, the packet transmission rate

drastically reduced which may negatively influence the quality of the provided services

and lowers the network throughput. On the other hand, there may be more than a single

path to reach a particular destination, and some paths may be underutilized. Suitable

path selection from among the multiple paths to optimize the overall network

performance is one of the critical issues in the network area. However, the routing

behavior in traditional networks is rather static and cannot be altered programmatically

on short notice. This makes it practically impossible to react to changing traffic

characteristics.

Another major challenge is the dynamic link bandwidth allocation with

congestion management that can support the QoS requirements for each traffic and

improve the service degradation for high priority flows. Hence, increasing the

bandwidth would not solve the problem. The reason for the losses can be found in the

burst nature of the network traffic which causes congestion when multiple traffics flows

transmitted on the same link produce high peaks simultaneously.

One more challenge of the current network architecture is to provide the

satisfaction of network users (customers). From the network operator point of view, the

network operator needs to use the available network resources and make sure the

negotiated SLAs are still met.

From the above problem statements, the following questions for this research

work can be gathered:

 How to provide bandwidth guarantee to QoS flow?

 How to improve the link utilization in SDN?

 How to steer the traffic to reduce network congestion while adhering to

constraints given by QoS parameters for different service types?

It should be noted that these research questions are closely related to each other and all

of them have the same destination. The main idea behind these research questions is

4

providing a performance guarantee for the high priority network traffic by supporting

network resources according to their QoS demands and the current network status.

1.2 Motivation of the Research

The Quality of Service (QoS) demand for network applications is increasingly

fast with global Internet traffic growing year per year. Providing higher bandwidth is

just not enough because many of the applications not only have bandwidth requirements,

but also require other QoS guarantees, such as end-to-end delay, jitter, or packet loss

probability.

The traditional network architecture was designed to provide Best Effort (BE)

service only. Therefore, it is not easy to provide a guarantee for requiring QoS

performance in current traditional networks. In the last decades, the Internet Engineering

Task Force (IETF) [81] has proposed two major QoS control architectures, i.e.:

Integrated Service (IntServ) and Differentiated Service (DiffServ. The former one,

IntServ [14] provides a way to deliver the end-to-end QoS solution. It uses bandwidth

reservation and admission control at each network element. The IntServ uses a resource

reservation system to ensures the portion of bandwidth reserved in every link for a

particular flow. However, the Resource Reservation Protocol (RSVP) is not fit for a

large network like the Internet due to its scalability problem. RSVP requires a periodic

reservation-state refresh. In a large network with RSVP, each network component needs

to store flow states, and it grows rapidly with the increasing number of flows and

network components. Following, the reserved bandwidth can only be used by the

reserving flow which may cause low bandwidth utilization in the network. On the other

hand, the complexity of DiffServ [12] is significantly lower than IntServ and it works

per-hop behavior (PHB) with aggregation for different classes of traffic. However, there

are no QoS guarantees in this architecture since bandwidth is shared among flows. Both

of these QoS control architectures have not been very successful or implemented on a

wide scale since they need some fundamental changes in the current network design.

In order to provide QoS guarantees for a specific application, the traditional

internet is facing a challenge to use network resources efficiently in allocating network

traffic to limited network bandwidth. In traditional network, network resource allocation

is partially implemented in the network components such as routers, switches, and links

inside the network and partially in the transport protocol running on the end hosts. The

5

implementation is not isolated to one single level of a protocol hierarchy. Therefore,

resource allocation and congestion control are known as complex issues in traditional

network.

SDN has been approached by many researchers in these days to overcome the

current Best-Effort limitations explained above. Hence, SDN can provide a global

network view of the network resources and their performance indicators such as link

utilization and the network congestion level which can help in network resource

allocation. Leveraging the advantage of centralized control in SDN, network-wide

monitoring, and flow-level scheduling can be used to achieve high QoS for network

applications and services such as voice over IP, video conferencing and online gaming.

By using the benefits of SDN, the controller makes the routing decision based on the

global view of the network resources in the SDN network.

In general, network providers optimize their network performance in order to

effectively fulfill as many customer demands as possible with traffic engineering (TE)

[1]. An important goal of TE is to use the available network resources more efficiently

for different types of load patterns in order to provide a better and more reliable service

to customers. The traditional network architectures are not well-suited for developing

sophisticated TE systems because they miss a set of desired properties. No entity in the

network is able to easily collect statistical information from all network devices and to

aggregate them to form a global view of the network which would allow a TE

application to understand the current network situation and simplify the computation of

routing paths.

Routing is a powerful tool of TE and it allows for controlling network data flows.

The aim of TE routing is to route as many demands as possible by reserving the amount

of bandwidth resources for each established route. For each traffic flow, the routing

scheme needs to select a route between its source and destination along which sufficient

resources are reserved to meet its require QoS. Generally, the main function of routing

is to find the best path to reduce network congestion and improve the quality of service

(QoS).

While QoS in SDN is still an area of research, it would not be wrong to believe

that achieving them on SDN would be far easier than it was on the traditional internet

considering its programmable nature. In very little time, SDN technology rapidly

6

developed and improved with the birth of a lot of independent projects working in

different areas of SDN.

1.3 Objectives of the Research

This thesis aims to provide high performance of different network traffic by

giving network resources to it according to their QoS demands and the current network

status. The proposed system uses an OpenFlow network architecture which provides the

ability to improve the link utilization while providing the requires bandwidth resources

and less packet loss rate as the QoS factor in the overall network.

In order to achieve this, the research work is divided into the following distinct

objectives.

1. To provide bandwidth guarantee to QoS flow by applying characteristics and

advantages of SDN technologies

2. To propose the resource allocation scheme as a small part of QoS-based traffic

engineering for SDN-based Network

3. To improve the link utilization while providing the required bandwidth resources

4. To reduce the packet loss rate of QoS flows and provide better performance

1.4 Contributions of the Research

In this research, the QoS demand approach is considered for end-to-end dynamic

network bandwidth resource allocation in the SDN network by taking account into the

QoS flow priority and the dynamic characteristics of the network link. The goal is to

improve the QoS performance of the high priority flow while providing the required

bandwidth resources and less packet loss rate as the QoS factor in the overall network.

There are three research contributions that have been assumed as a hierarchical

level to create a QoS capable SDN network in this thesis which are summarized in the

following:

 Proposing an end-to-end dynamic bandwidth resource allocation procedure

based on TE in SDN to support the QoS requirements of different types of

network traffic flows. The QoS guarantee is provided in both controller and data

link level. Firstly, an admission process is performed to make sure that the QoS

flows get enough bandwidth at the controller level. Then, the proposed system

7

uses the queue mechanism provided by the OpenFlow in the data link level to

improve the performance and to ensure the QoS of the high priority flow.

 Implementing QoS routing for different types of QoS traffic class by taking

advantage of SDN technology. The calculation of the feasible path for all traffic

can satisfy the user demand bandwidth. Compare the difference routing

strategies and showed (by simulation) that the QoS routing gives a substantial

gain in all performance metrics, and was better than traditional and multipath

routing.

 Implementing Congestion handling to handle the network congestion in case. To

mitigate the flow performance degradation, detect the link bandwidth by

reserving the required bandwidth for the incoming flow. If the link bandwidth

satisfies the predefined threshold value, the proposed system defined it as the

bottleneck link and reroute the highest priority flow from the bottleneck link to

an alternated link that has enough bandwidth for the rerouting flow.

1.5 Organization of the Research

The structure of the dissertation is described as follows:

 Chapter 1 provides an introduction to the research. It presents a brief background

and motivation behind the research and then presents the research questions

addressed in this dissertation.

 Chapter 2 briefly introduces the SDN technologies and related research areas

and then reviews the relevant literature.

 Chapter 3 presents the State of the Art of SDN and the required technologies

background for implementing QoS in the SDN environment.

 Chapter 4 presents end-to-end QoS including the origin, progress, and challenges

faced in SDN.

 Chapter 5 explains the architecture and internal details of the various

components of the SDN framework that would be used in this dissertation.

 Chapter 6 presents the implementation of the proposed system and essential parts

of the developed SDN application to give the reader an understanding of how

the platform operates.

8

 Chapter 7 presents the various experiments conducted in this dissertation. It

presents the statement of the experiment followed by its implementation, results,

and observations.

 Chapter 8 concludes with the challenges faced and contributions made in this

research. It ends with a discussion on future work in this direction.

9

CHAPTER 2

LITERATURE REVIEW AND RELATED WORK

This chapter presents the traditional network, the SDN network with its

application area, and the traffic engineering domain problems exposed in the existing

SDN architecture. The first section presents the traditional network’s components and

its challenges. The second section covers a brief overview of SDN and its advantages

over the traditional network. The third section starts with a focus on the application areas

of SDN. Finally, the last section reviews the related research studies and its current

work.

2.1 Traditional Network

Ethernet switch is one of the most commonly used network elements to serve as

the network connection point for hosts in Local Area Networks (LANs). It uses hardware

addresses, MAC addresses, to forward the frame at the data link layer of the (Open

Systems Interconnection) OSI model. The switch operates at the data link layer of the

OSI model to create a separate collision domain of every switch interface. Each network

element connected to a switch interface can transmit and receive the data

simultaneously.

The switch forwards data frames based on the Media Access Control (MAC)

table. When a frame arrives at a switch, the switch will put the source MAC address and

correspond incoming interface number in the MAC table as the basis for forwarding new

frames. Then the destination MAC address will be inspected. If a switch not having an

entry for the destination MAC address in its table, it floods all of its interfaces with a

broadcast message requesting the location of the MAC address. Each connected switch

relays this broadcast message to all of its neighbors until eventually a switch replies.

This reply is traced back to the original switch that initially requested the location of the

MAC address and MAC tables are updated by each switch along the way to reflect the

newly discovered MAC address.

If the destination MAC address is a multicast address or unknown unicast, it will

forward the frame to all the interfaces except the incoming interface. Otherwise, the

frame will be forwarded to the specific interface according to the MAC table. When the

10

switch floods a frame to the network, it may create the traffic loop in the network whose

topology consists of loops. To solve this, the legacy switch usually uses a spanning tree

protocol that blocks some interfaces so that the resulting logical LAN topology is a tree.

Through the spanning tree protocol, traffic loops can be prevented.

2.1.1 Challenges of Traditional Networks

 Mobile devices and their contents, cloud computing, and virtualization, have

highlighted the need for a new network architecture that the industry is trying to satisfy.

This change was necessary because the old network architecture was based on hierarchy,

which was built on tiers of Ethernet switches arranged in a tree structure. This kind of

architecture was unsuitable for nowadays dynamic computing and storage needs of

enterprise data centers, campuses and carrier environments are not satisfied. All this is

a challenge for traditional networks.

Traditional networks were static in nature and were manually configured based

on service requests. Thus will make it challenging to control the network in both their

management and their operation. Traditional networking functions are mainly

implemented in dedicated networking devices such as switches, routers, and application

delivery controllers. As for network management, networking devices have to be

configured on a per-device basis using vendor-specific proprietary interfaces. While

network administrators need to define high-level policies and apply them over the whole

network, these interfaces only allow low-level configuration of individual devices. And

although tools for centralized management exist, they serve rather for monitoring of the

network than for its configuration as a whole.

Concerning network operation, typical networking devices use routing protocols

to fill their forwarding tables, but may also allow for network administrators to manually

configure additional rules. These rules may, for example, provide application port

filtering or different treatment for particular quality-of-service classes. Unfortunately,

there is no protocol to automatically distribute these more complex policies over the

network [29].

With packet forwarding based only on destination addresses or statically defined

rules, the network cannot react to the dynamics of the traffic or to the occurring

abnormalities. Be it peak loads, applications with high demands for Quality of Service,

or applications requiring high bandwidth, with the static setting, the network has no

11

instruments to appropriately utilize its resources unless equipped with specialized

devices like load balancers.

To be fitted for demands of modern deployments, in both campuses and data

centers, a network should provide means for automation, so it could react to occurring

events on its own and efficiently use available resources while ensuring resilience. Such

a network should also be virtualized in order to provide a high-level abstraction for

convenient management of the network regardless of the underlying physical layer and

its specifics [29].

Software-defined networking, further described in the next session, is assured to

bring a solution to the various problems networking is facing today.

2.2 Software-Defined Networking

A new networking architecture called Software-Defined Networking (SDN)

emerged in the early 2010s. The essence of SDN is changing the way of the network to

change the way of creating and managing the network. The main characteristic of the

SDN architecture is that decoupling the control plane and data plan and abstracting from

each other. A consequence of this decoupling is lead to greater flexibility in network

management. Since networking devices such as switches and routers simply act as the

data plane’s forwarding devices, the controller at the control plane centrally controls the

devices by determining the forwarding rules according to the network condition. Unlike

traditional traffic management, instead of managing network traffic at the per-hop level

from one host to the next, SDN works with the flow level from source to destination.

The controller determines the path and reserves the resources from source to destination

when a flow is admitted. This design leads to global views and management of network

traffic, which makes it possible to coordinate QoS guarantees and forwarding decisions

at larger scales. Overall, SDN makes network management much simpler by providing

dynamic reconfiguration of network devices in the data plane and by centralizing flow

coordination in a network to minimize resource contention.

2.2.1 Differences between Traditional Networking and SDN

In the traditional network model, the control plane and the data plane are bundled

inside the networking devices. The data plane tells the incoming traffic where it needs

12

to go. The location of the control plane is particularly inconvenient because

administrators do not have easy access to dictate the traffic flow.

Figure 2.1 Architecture of Traditional Network and SDN Network

In the SDN network model, SDN breaks the vertical integration of the control

plane and data plane by separating the network’s control logic from the underlying

routers and switches that forward the traffic. As a consequence, network switches

become simple forwarding devices and the control logic is implemented in a logically

centralized controller simplifying policy enforcement and network configuration. Figure

2.1 depicted the comparison of traditional network and SDN network architecture. Three

main differences between traditional networking and SDN architecture are as follows:

 SDN controller has a northbound interface to communicate with applications

through application programming interfaces (APIs). This allows application

developers to program the network directly while traditional networking works

through using protocols [46].

 To establish connections and run properly, traditional networking relies on

physical infrastructure. Meanwhile, SDN is a software-based network, which

allows the network users to control virtual-level network resource allocation via

the control plane and to determine network paths and proactively configure

network services.

 In traditional networking, the control plane is located in a switch or router, which

is particularly inconvenient for the administrators to access it to order the traffic

flow. Compared with the traditional networking, SDN has more ability to

13

communicate with devices throughout the network. SDN offers administrators

the right to control traffic flow from a centralized user interface and allows

resources provisioning from a centralized location. It virtualizes the entire

network and gives users more control over their network capabilities.

2.2.2 Advantages of SDN

The rapid development of new trends in networking, such as server

virtualization, cloud services, a vast diversity of mobile data applications, etc.,

determines the need for new network architectures to manage flexibly with the changing

environment. The new emerging technology, SDN has several advantages over the

traditional network. The most common specific advantages of SDN are as follows:

 OPEX reduction: centralized control helps to eliminate manual interaction with

the hardware, improving the uptime of the network.

 CAPEX reduction: separating the data plane of the control plane brings to

simpler hardware and increases the possibility of more competence between

hardware manufacturers since the devices do not depend on the proprietary

software.

 Agility: since the control layer can interact constantly with the infrastructure

layer, the behavior of the network can adapt fast to changes like failures or new

traffic patterns.

 Flexibility: having a separated abstraction for the control program allows us to

express different operator goals, adapting to a specific objective. Operators can

implement features in the software they control, rather than having to wait for a

vendor to add it in their proprietary products.

The particular advantages of SDN will typically vary from network to network,

however, there are benefits from network abstraction and the agility it offers for network

administration and automation. The most ideal approach to take advantage of SDN is to

assess the network components and infrastructure to decide whether SDN can help

address issues, for example, resource availability, virtualization, and network security.

The significant advantage of adopting the SDN is the world's largest networks such as

Facebook, Yahoo, NTT Communication Deutsche Telekom, Microsoft, Google that

have supported SDN based architecture.

14

2.3 SDN Applications Areas

Currently, SDN has found a great deal of applicability in a wide range of network

application areas. SDN provides the opportunities for large scale network like data

center network with the help of its real-time programmable framework. Moreover,

mobile operators have also shown intense interest in bringing the technology to 5G/ LTE

mobile networks to allow simplified yet rapid development and deployment of new

services. Also, SDN is widely used by social networking websites (Facebook, Twitter,

Google plus etc.) and large database search engines (Google, Yahoo, Ask etc.). The key

applications area of SDN and some are highlighted in the following sub-sessions.

2.3.1 Traffic Engineering

Traffic engineering (TE) is a key networking area for measuring and managing

the network traffic, designing reasonable routing mechanisms to guide network traffic

for improving utilization of network resources, and meeting required quality of service

(QoS) of the network. Therefore, the path control process through which the traffic is

handled in TE. There are many reasons why network managers need to influence the

characteristics of a path, one of them is the use of optimization of network resources. To

optimize the network resources, network managers must try to avoid the situation of

certain parts of congestion when others are underutilized. Another important reasons are

to find the path with certain limitations-constraints that can support the proper

performance for some high priority flows. For example, the path for the delay-sensitive

flow like VoIP should not be long delay links. Through this process of TE new services

are offered with extensive QoS guarantees and investments decline in new network

resources such as bandwidth, by optimizing the use of existing ones.

The underlying network architecture is required on today’s internet applications

to be scalable for a large amount of traffic and to react in real-time. Also, the demand

that the user has been also growing and the user now wants to be connected with

everything, constantly. Moreover, each application and services generate their own

characteristic flow and they shared the overall network bandwidth competitively.

Therefore, the network architecture should be able to classify a diversity of network

traffic types from different applications and to provide a suitable and particular service

for each traffic type in a very short time period. It is not easy to make sure that to

15

efficiently handle and steer all those varieties of traffic types in order to meet their

specific performance for each specific application. Therefore, new networking

architectures with more intelligent and efficient TE tools are urgently needed.

Figure 2.2 Traffic Engineering Architecture in SDN

Figure 2.2 illustrates the abstract view of TE architecture in the SDN network.

Compared with the traditional networks, the TE mechanism in SDN can be much more

efficient and intelligently implemented due to its distinguishing characteristics. More

specifically, SDN provides the concept of decoupling between control and forwarding

plane, the programmability of network behavior, and global centralized control.

Figure 2.3 The components of Traffic Engineering

Figure 2.3 illustrates the components of TE. The TE technology based on the

SDN comprises two portions: traffic measurement and traffic management [1]. The goal

16

of the traffic measurement is to studies the monitoring, measuring, and acquiring the

SDN network’s status information in the SDN network. The information includes the

status of current topology connection, ports (down or up), various types of packet

counters, the counters of the dropped packets, ratios link bandwidths utilization, end-to-

end traffic matrices and end-to-end network latency so on. For avoiding network

congestions and improving network efficiency, the network status information can be

used in validating whether the current network status is current by the administrator and

predicting the future traffic trend by analyzing packet counters statistics.

Network management mainly studies how to maintain network availability and

how to improve network performance. Network traffic scheduling is an important way

to improve QoS performance for the different application traffic. In general, SDN has

multiple paths between the source and the destination node, which can be used for traffic

scheduling. The controller maintains the global view of the current status of each path

in the network using various network measurement technologies mentioned above.

Consequently, the network administrator can design a traffic scheduling algorithm to

dynamically plan data forwarding paths to meet users’ requirements.

2.3.2 Network Resource Optimization

Network resource optimization can involve a number of specific optimization

goals, including traffic reduction, blocking reduction, latency reduction, and load

balancing. Some of these goals are not exclusive and are closely linked; for example,

reducing traffic in the network often results in a reduction in blocking, due to there being

additional capacity available within the network for further traffic. However, there are

also other ways to reduce blocking within the network, such as spreading the load across

the network in a load balancing approach. These close links between optimization goals

are important, as they provide insights into multiple solutions to larger optimization

problems. These types of problems often require using multi-objective optimization

techniques, in order to achieve the best solution possible. This is because multi-objective

optimization allows for a far wider search of solution parameters than normal

optimization techniques.

With the existing optimization goals in mind, it should be clear that each

characteristic being improved could benefit specific scenarios; furthermore, it is

important to tailor optimization techniques to the application being utilized on the

17

network. For example, delay-tolerant content delivery would not benefit significantly

from latency reduction, but the reduction in traffic would provide improved scalability

due to additional capacity being available for further demands. In addition to this, a

reduction in traffic would also reduce transmission costs for any links where cost is

linked to usage.

2.3.3 Data Centers and Cloud Environments

Compared with the small scales network, the requirements of TE and policy

implementation are really high in the case of large scales network architecture like a

datacenter. Generally, increasing network latency and persistent troubleshooting may

result not only in undesirable end-user experience but also in substantial effects on the

cost penalties for the operators. Due to the significant feature of centralized control

framework, the implementation of Datacenter (DC) in SDN can provide the fine-grain

network management which makes easier for the network operators to monitor and

manage hundreds of network element. For example, Google described four generations

of their datacenter networks by using SDN technology in 2015. SDN tied a connection

between its geographically distributed data centers from all over the world [42].

The implementation of SDN in the cloud computing environment delivers a

solution for powerful TE to increase service scalability and automated network

provisioning. Microsoft public cloud [57] and NTT's software-defined edge gateway

automation system [53] are the distinguished examples of SDN deployment in a cloud

computing environment.

From the perspective of cloud operators, energy consumption becomes the

biggest issue for reducing operational costs and expands. In [32], the authors tried to

reduce energy consumption by switching off redundant switches from the controller side

during low traffic demand.

2.3.4 Campus and High-Speed Networks

The heterogeneous networking technologies integration with a centralized

controller and OpenFlow enabled network elements has seen a great deal of applicability

in optical high-speed networking. Customer needs for the SDN framework for enterprise

networks are urgent due to the diversity of network traffic patterns that require proactive

management to adjust network policies and fine-tune performance. Using centralized

18

real-time programmability of SDN, the network may eliminate middleboxes which

provide services such as NAT, firewalls, access control and service differentiation

solutions and load balancers [51].

For achieving programmability for the greater network, SDN application, and

high speed and campus networking controlled with OpenFlow continue to grow

resulting in new as well as hybrid solutions. SDN provides a centralized control plane

to effectively monitor the network resources utilization.

2.3.5 Residential Networks

As the number and heterogeneity of network elements connected to the Internet

continuously growing, the network in the customer’s house has become a critical factor

to manage network operations and meet the end-user expectations. SDN provides an

ability to manage residential and small office home networks. SDN provides a

centralized control plane to effectively monitoring network resource utilization. SDN

offers a great opportunity of effective monitoring for network usage visibility to network

operators and residential users via the [15], [38].

Using the SDN controller, Dillon and Winters [21] proposed the introduction of

virtual residential gateways to allow providers remote management flexibility in

delivering service to homes. For fine-tuning and troubleshooting the residential network,

an SDN controller controlled and managed remotely the residential router or gateway

from the service provider site [21], [25], [16].

Some contrasting schemes propose giving users more control and incorporating

SDN based monitoring in the residential environment to change network policies [21]

[64] [75]. From a security point of view, it has been argued that an SDN based anomaly

detection system in a residential SDN environment provides higher scalability and more

accuracy than intrusion detection systems deployed at the side of internet service

provider [49]. Feamster in [27], proposed totally outsourcing residential network

security utilizing programmable network switches at the customer sites to allow remote

management. By employing the outsourced technical expertise, management and

running of tasks such as software updates and updating anti-virus utilities may be done

more effectively as the external operator also has a wider view of network activity and

emerging threat vectors. The privacy of end-users where technical operations related to

residential network management are outsourced also requires consideration [52]. SDN

19

framework for residential networking remains an active area of industry and academic

research.

2.3.6 Wireless Communications

The SDN paradigm has been ported to mobile communication networks because

of the real-time programmability and potential to introduce new applications and

services to consumers. A programmable wireless data plane allowed developers to fine-

tune mobile communications performance by offering routing based on flexible MAC

and physical address in comparison to the traffic forwarding based on layer 3 logical

address[44]. There have been growing efforts to include the SDN layering model in the

upcoming 5G mobile communication. There is an opportunity to offer a more modular

control and traffic forwarding framework with the use of SDN, user traffic can be

separated and routed over different protocols. Similar to information-centric

networking, an efficient network resource management scheme is needed to provide

maximum utilization network slicing, and guaranteeing fairness among several QoS

classes [67].

Using SDN to maximize energy efficiency in 5G networking has, therefore, been

the subject of investigation in several studies. SDN has also been test-implemented in

5G to allow rapid application service provisioning while adhering to stringent QoS

requirements. At the more local level such as Wi-Fi access networks, SDN could be

used to offer a great deal of ubiquity in connecting to different wireless infrastructures

belonging to different providers using user device identity management which is in turn

coordinated and proactively managed by the SDN controller.

2.4 Research Challenges

This section discusses the major research advances made in several SDN areas

in detail. With the growth of network applications in the SDN framework, the

highlighted areas of research challenges going from application performance to security

in the present SDN architecture. Most of these research provided one or other form of

achieving QoS.

20

2.4.1 Application Performance

The improvement of application performance has been the primary area of focus

in a number of SDN related studies ranging from application-aware SDNs, utilizing the

framework for optimizing time-critical applications to the development of novel

application performance monitoring solutions. The following sub-sections discuss the

studies carried out in this regard.

2.4.1.1 Application-awareness in SDN

Application-awareness in SDN infrastructure considers the benefits of the SDN

framework to compromise greater performance for particular applications. The

southbound APIs like OpenFlow is capable of Layer-2/3/4 based policy enforcement

but shortage to provide high-level application awareness. Therefore, network

management primitives are employed which alter the traffic forwarding policies for

individual applications and the SDN controller translates these into device configuration

using a southbound API such as OpenFlow. The concentration in this area has seen

several studies on video streaming (YouTube, P2P video, etc.) and voice

communications (VoIP), using the SDN architecture to improve the individual

application quality of service.

In one such ‘application-aware’ SDN work, Mekky et. al [50] proposes a per-

application flow metering approach using the SDN framework. Applications are

identified in the data plane and applied the appropriate policies according to the

individual application tables. The proposed scheme minimizes the SDN control channel

overhead. The study showed significant improvement in application forwarding

performance with low overhead.

2.4.1.2 Application Performance Monitoring

With the recent developments of virtualization technologies, a wide range of

applications are hosted on multiple servers in datacenter and cloud environments. To

improve the performance of applications in such area requires the development of a tool

which can monitor the application traffic in virtual platforms and apply traffic

management policies. In this domain, SDN is seen as a key enabling technology due to

the decoupling of control logic from forwarding elements.

21

For large scale network performance analysis, Liu G. and Wood T. [19]

presented a platform called NetAlytics which uses network function virtualization

(NFV) technology to deploy software-based flow monitors in the network. The system

aimed to analyze application performance and application popularity by collecting

network traffic statistics.

For cloud-based data centers, Maan et. al [47] developed a network monitoring

system to monitor network flows at the edge of the network. The work proposed a

scalable network monitoring utility called EMC2 to be used for performance evaluation

of switch flow accounting methods. The evaluation recommends NetFlow [105] which

can provide network handling ability with minimal use of computing resources to

monitor application traffic in virtual environments and cloud-based data centers.

2.4.1.3 Video Streaming and Real-time Communication

Focusing on video streaming applications, Egilmez et. al [22], devised an

analytical framework for traffic optimization at the control layer while offering dynamic

and enhanced Quality of Service (QoS). The study reported significant improvement for

the streaming of encoded videos under several coding configurations and congestion

scenarios.

Jarschel et. al [35] instead focused specifically on improving YouTube

streaming experience for end-users. The study used Deep Packet Inspection (DPI) and

demonstrated how application detection along with application state information can be

used to enhance Quality of Experience (QoE) and improve resource management in

SDN.

CastFlow [48] was another example of video streaming optimization, which

proposed a prototype aimed at decreasing latency for IPTV using a multicast approach,

logically centralized and based on OpenFlow networks. During multicast group set all

possible routes are calculated in advance to reduce the delay in processing multicast

group events (joining and leaving hosts and source changes). Using Mininet based

emulation, the reported results showed satisfactory performance gains and the time to

process group events appeared to be greatly reduced.

Noghani and Sunay [54], also utilized the SDN framework in allowing the

controller not only to forward IP multicast between the video streaming source and

destination subscribers but also to manage the distributed set of sources where multiple

22

description coded (MDC) video is available. For medium to heavy loads, the SDN based

streaming multicast framework resulted in enhanced quality of received videos. Some

related studies try to verify the importance that the underlying testbeds may have on any

evaluations reporting perceived improvements in video streaming quality using SDN.

Panwaree et. al in [56], showed the benchmark of the packet delay and latency

performance of videos which were tested on both Mininet environment and actual

physical PC clusters using Open vSwitch. It was noted that the packet delay and loss in

the PC-cluster testbed were higher than the Mininet emulated testbed suggesting a

careful interpretation of performance expectations in realistic environments.

2.4.2 Data Center Solutions and Resource Allocation

Traffic measurements in data centers show signification variation in network

workload hosting multiple applications on the same physical or virtual network fabric

[83]. The SDN paradigm brings automation and on-demand resource allocation in data

center networking [97] [4]. Using SDN, the DC environment can afford faster state

changes, a fundamental necessity of modern data centers [42]. Several prior works have

discussed the improvement of individual applications and services in the DC network

environment.

Application connectivity models were used in [10] and [43] to allocate per-

application network bandwidth. However, application delivery constraints are prevalent

in data centers where virtual machines from several applications may be simultaneously

competing for resources. To address bandwidth allocation, Kumar et. al [42] employed

user-space daemons running on application servers to predict anticipated traffic and

assigning forwarding paths to applications using operator configured policies.

Jeyakumar et. al [36] proposed a weighted bandwidth sharing model among

nested service endpoints allocating resources hierarchically at core fabric, rack, and

individual machine level. However, the resulting operator defined per-application

bandwidth sharing schemes are highly dependent on the stability of application demands

for long enough periods to optimize network traffic. Fang et. al [24] tried to prevent

excessive traffic arrival into the network by implementing host congestion controls and

proposed multipath selection to achieve optimal network resource utilization.

High-end network vendors propose and recommend the confederation of

services approach to improve performance [86]. However, the application

23

differentiation available at the system and network-level to assign machine limits and

create end-to-end network topology per application does not explicitly consider user’s

application trends. Therefore, resource provisioning on a per-application basis leads

operators to pre-set network provisioning models to improve the end-user experience

regardless of real-time network conditions. A more user-centric approach where user

requirements and activities are captured may present a resource abstraction model,

which could offer service providers the ability to fine-tune network resource share on

the basis of user traffic classes in view of business and user requirements instead of

isolated applications.

2.4.3 QoS Routing and Path Establishment

A variety of network algorithms can be implemented in SDN including shortest-

path routing, and more sophisticated ones such as traffic engineering [30]. Recently,

different applications have been implemented in SDN with policy-based access control,

adaptive traffic monitoring, wide-area traffic engineering, network virtualization, and

others. SDN controllers manage the entire network, so they must often change rules on

multiple switches.

From the beginning of the networks, communication is decided based on the

Shortest Path First (SPF) routing algorithms. In today’s network, QoS becomes more

and more important for a wide range of communication network settings and

applications. However, because of the limitation of the current SPF-based routing

algorithm, network link congestion often occurs even when the total load is not

particularly high. This is challenging for multimedia applications that require certain

QoS [4] levels for appropriate functioning. Generally, the route computation is either

carried out in distributed nodes which can Internet Protocol (IP) routers or by a

centralized controller. The main goal of the Shortest Path (SP) problems is to minimize

a unique end-to-end QoS metric. Based on the category of the network routing problems,

there are four types of QoS based routing algorithms [4]:

• Shortest Path (SP)

• Constrained Shortest Path (CSP)

• Multi-Constrained Shortest Path (MCSP)

• Multi-Constrained Path (MCP)

24

2.4.4 Congestion Control

Most congestion control algorithms in the literature are flow-based in general

and the Transmission Control Protocol (TCP) in particular. TCP is a feedback

congestion control on flow-level where the transmission rate is based on a sliding

window. Packets are acknowledged by the receiving side, and when congestion is

detected by the sender not receiving an acknowledgment before a set time elapse, or

receiving duplicate acknowledgment, it retransmits the unacknowledged packets [41].

In [68], the authors investigate the predictability of self-similar and how this can be used

in congestion control to improve the throughput of TCP by proposing a feedback

congestion control, using the throughput as a control variable, and adjusting the

bandwidth from the client to maximize the throughput.

Over-demand of network resources can cause congestion which may lead to

performance degradation when compared to states with lower demand [31]. It is

therefore imperative to assume that network resources are sufficient to cater for the

offered traffic most of the time.

Some authors highlight the need for more efficient detection of network

congestion. Huang et al. [34] note that TCP is suboptimal for high-speed networks and

suggests using free router capacity, ingress aggregate traffic and queue length as

decision variables to make TCP converge faster and achieve fairness, and Haas and

Winters [31] suggest probing for congestion with test packets. An alternative algorithm

to Random Early Detection (RED) using Explicit Congestion Notification (ECN) is

presented in [26], where packet loss and link utilization are used, rather than queue

length, to detect congestion. The result is a faster detection of congestion and more

adequate rate adjustment to mitigate the congestion.

Using the method classification in [28], this research proposed a congestion

control scheme that works on hop level and measures flow quality of service,

disregarding admission control and transport protocol functions. The effect of the end-

to-end performance is studied delay, packet loss and throughput by dynamic traffic

aggregation at the nodes and optimal routing with respect to delay. A theoretical

investigation of feedback congestion control strategies can be found in [60]. It discussed

the differences between feedback from aggregate traffic and individual flows. It is also

shown, that the transmission rate resulting from a feedback congestion control can be

25

expressed as a fixed-point equation, a technique used in this approach to determine

optimal routes.

2.5 Literature Review

This section covers an existing literature review of traffic engineering and

resource allocation for SDN based networks. A lot of real-time business network traffic

such as instant messages, voice data, and so on, is sensitive to packet losses and delays

in the transmission process. Thus, an important problem of traffic management is the

reasonable scheduling of network resources for providing the QoS for business. SDN

has an open control interface supporting flexible network traffic scheduling strategies,

which can satisfy different network applications' QoS requirements. Therefore, most of

the researchers try to design a traffic scheduling algorithm to dynamically plan data

forwarding paths to meet users' requirements.

Some research works studied the SDN control framework and flow rerouting

schemes to provide the end-to-end QoS provisioning.

In [6], Jaward et al. proposed a policy-based QoS management framework to

achieve end-to-end QoS with rerouting and rate-limiting.

In [73], Chenhui et al. proposed a QoS-enable management framework to

guarantee the QoS of specific flow and employ the queue technique and policy to satisfy

the requirement of service. Flow rerouting is carried out on the priority flow in order to

mitigate the impact on best-effort flow.

Tomovic et al. [65] presented a new QoS based SDN control framework that

provides the required QoS level for multimedia applications flexibly and automatically.

They aimed to minimize the best-effort traffic performance degradation. They estimated

the link utilization by using a threshold value (80% of the link) and rerouted the best-

effort traffic before congestion occurs.

The equivalence multipath routing technology (ECMP) [77] was proposed as an

effective load balancing solution. ECMP routing based on a hash algorithm. To make

hash calculations, the header fields of the packet is extracted whenever the packet arrives

at a switch or router. Then, one of the forward paths is selected by the hash value. As

the results, the IP packets with the same head are forwarded along the same path. A key

limitation of ECMP is that two or more large, long-lived flows can come into collision

on their hash and end up on the same output port, creating a bottleneck.

26

Therefore, there are many works to complete ECMP by implementing the flow

detection module and detecting the large flow then schedule these flows along a

redundant path with a suitable capacity to improve the network performance.

A dynamic and scalable flow scheduling system, Hedera [5], is for avoiding the

limitations of ECMP. By periodically pulling the flow statistics, it detects the elephant

flows at the edge switches. Initially, switches send a new flow via the default flow rules

with one of its equal-cost paths till the flow size grows and meet the threshold. Then,

the flow is identified as elephant-flow. It used 10% of the network interface controller

(NIC) as the default threshold. It has functions such as a global view of routing and

traffic demands, collection of flow information from switches, computation of non-

conflicting paths for flows, and instructing the switches to re-route traffic accordingly.

For improving the network performance and scalability DevoFlow [18] was

proposed by maintaining the flows in the data plane without losing the centralized

network view. As a result, it decreases the interaction between the data plane and the

control plane. It designed wildcards based multipath matching rule. Initially, it forwards

the traffic with its multi-path wildcard rules. The controller calculates the path with least

congested when an elephant flow is detected and re-routes the traffic to this path.

Mahout [17] modified the end-hosts for detecting elephant-flows to overcome

the problem of high resource overhead by the flow detection mechanisms used in

Devoflow and Hedera. It used ECMP for routing the normal traffic. The controller

calculated the best path when an elephant-flow is detected. The controller collects the

link utilization and elephant-flow statistics from the switches to select the least

congested path for calculating the best paths. Mahout could faster and lower processing

overhead in the detection of the elephant-flows while comparing with other methods.

However, it required the end-hosts modification.

On the other hand, some works are trying to place flows based on minimum link

utilization and independent of flow size. In [69], F.P.Tso and D.P.Pezaros introduced

Baatdaat, measurement-based flow scheduling for reducing congestion in data center

networks. It used the lightly-utilized paths and allows flow rerouting to schedule traffic

flows.

In [11] Benson et al. presented a traffic engineering mechanism for data center

network called MicroTE, which uses an end-host elephant flow detection to detect the

elephant flows. MicroTE passively monitors the flow status by flow statistics like the

27

Mahout. It triggers flow aggregation behavior when the flow status is clearly changed,

For judging the current flow is an elephant flow, it can be predicted relying on the

difference of the size of the instantaneous flow rate and average flow rate. It starts the

routing optimization calculation or deals with it using a heuristic ECMP algorithm when

it can predict the flow.

Tootoonchian et al [66] proposed OpenTM which is a traffic matrix estimation

system for the SDN. It can detect all active network flows according to the flow

forwarding path information and routing information of the controller. It contains the

various selective querying methods for routing nodes to receive accurate information of

the flow evaluation and packets number.

Furthermore, there are many kinds of solutions that have been proposed to

guarantee the QoS requirement in the SDN network. OpenFlow supported queue

scheduling is the most common tool to implement QoS control for individual flow in

the data plane. It can be used in providing bandwidth guarantees by shaping and

prioritizing traffic to share the network bandwidth [8]. In [13], Boley et al. developed a

QoS framework to achieve optimal throughput for all QoS flows with the help of meters’

function. In [45], Li et al. implemented a queue scheduling technique used on SDN

switches to achieve QoS for cloud applications and services.

Yan et al. [40] proposed HiQoS which is a QoS-guarantee solution in the SDN

network. To guarantee QoS for the different types of traffic, it identifies multiple paths

between source and destination nodes by using the queuing. It can increase throughput

and reduce delays according to its experimental result. It reroutes the traffic from failed

paths to other available paths for recovering from link failure rapidly.

OpenQoS was proposed to provide a QoS guarantee for multimedia business

flows distribution. Since multimedia business flows have different packet heads while

comparing with other packet heads, it divides all data traffic into two categories, data

flows and multimedia by using OpenFlow configuration matching rules. It observes the

forwarding paths performance with packet losses and delays and chooses the best path

that can meet with the requirements of QoS. By using the original path, it forwards the

remaining data flows. However, it does not consider the business flows with multiple

QoS requirements and it only optimizes multimedia flow scheduling.

In order to provide QoS, the appropriate network resource allocation is needed.

The knowledge of the current network state is required to make the right decisions with

28

regard to packet forwarding. Therefore, network monitoring plays an important role in

providing QoS. In [76] and [70], the researchers developed a monitoring module for the

controller of the SDN, which can analyze dynamic changes in network flows according

to messages received by the controller.

User-reservation based end-to-end dynamic bandwidth allocation scheme was

proposed in [78] and [80]. Akella et al. [3] studied bandwidth allocation for ensuring the

end-to-end QoS guarantee of each cloud user based on SDN. Their work emphasized on

bandwidth allocation with queueing techniques.

2.6 Chapter Summary

The majority of studies highlighted in the above discussion included a range of

network management models ranging from a more ‘application-aware’ SDN paradigm

to the use of SDN-based QoS routing, including congestion control and SDN based

monitoring techniques which allow performance measurement and QoS guarantees for

certain services. It is learned that a wide range of techniques can be used to implement

QoS-based traffic engineering systems in SDN. To replace the current internet

architecture, SDN has to come with solutions to a number of problems. Some of them

have been addressed in the literature review. However, the quality of service capabilities

of all the different components of SDN will also play a major role in the widespread

adoption of SDN in the real internet.

The current work in SDN based traffic optimization focuses on improving the

quality of individual applications and services such as VoIP or video streaming in

several different network environments. Other studies involve information-centric

networking focused on bringing the data sources closer to the network edge, to again

improve traffic conditions for the hosted application(s). However, existing studies do

not specifically consider that prioritizing specific applications may have on other

applications in the SDN architecture.

29

CHAPTER 3

THEORETICAL BACKGROUND

Software Defined Networking (SDN) is the newly proposed paradigm for

drastically changing the way the existing networks are working. The basic principle of

SDN lies on the decoupling of the network control and forwarding planes; then an

external SDN controller can dynamically inspect rules into SDN capable nodes. Based

on these rules, the SDN capable nodes perform packet inspection, manipulation, and

forwarding. In addition, the underlying SDN capable nodes (can be Open flow switches,

OpenVswitch or Virtual Routers, etc.) can inspect and modify packet headers at different

levels of the protocol stack, from layer 2 to application layer [97].

In the SDN architecture, the control layer has network intelligence and the

underlying network infrastructure layer and those layers are connected via the APIs.

Thus, researchers and developers can be able to focus on each layer of the architecture

without considering the other layer complexities. The main feature of SDN architecture

is programmability that enables carriers and enterprises to adapt rapidly changing

business demands in an automated manner and more flexible [92].

3.1 SDN Reference Architecture

An SDN consists of three layers: application layer, control layer, and data plane

layer. A detailed explanation of the key layers is:

 Data (forwarding) Plane: In a bottom-up fashion, the data plane is the

forwarding device interconnected through wired or wireless means. The data

plane's purpose is to forward network traffic as efficiently as possible based on

a certain set of forwarding rules which are instructed by the control plane. SDN

architecture removes the forwarding intelligence from the networking hardware

and moving these functionalities to the control plane. One way traditional

OpenFlow switches (i.e., the data plane) provide these forwarding properties is

through Ternary Content-Addressable Memory (TCAM) hardware. The

forwarding elements and SDN controller communicate using the southbound

interface called OpenFlow. At present, the Open Flow protocol [71], serves as a

30

standard southbound communication protocol supported by several vendors

including the ONF [92] [84].

 Control Plane: The SDN control plane, often referred to as the controller, is the

component that programs and manages forwarding devices over the southbound

interface. The control plane is responsible for making decisions on how traffic

would be routed through the network from the source node to destination node

based on end-user application requirements and communicating the computed

network policies to the data plane. The controller becomes the centralized brain

in the network and it works as a network operating system (NOS). An SDN

controller translates different application requirements such as the need for QoS,

traffic prioritizing, bandwidth management, etc. into relevant forwarding rules

which are communicated to data plane network forwarding elements. SDN

becomes possible to manipulate flow tables in individual elements in real-time

based on network performance and service requirements by using network

programmability through the control plane. In brief, the controller gives a clear

and centralized view of the underlying network giving a powerful network

management tool to fine-tune network performance. Furthermore, the control

plane provides the network abstraction that can be used by network applications

to achieve high-level functionality in the network.

 Application Plane: The application plane includes network management

applications such as firewalls, routing, and other applications that enforce the

policy. An abstract view of the underlying network is presented to applications

via a controller northbound API. The level of abstraction may include network

parameters such as throughput, delay, and availability. Applications in return

request connectivity between end nodes and once the application or network

services communicate these requirements to the SDN controller, it

correspondingly configures individual network elements in the data plane for

efficient traffic forwarding. Centralized management of network elements

provides additional leverage to administrators giving them vital network

statistics to adapt service quality and customize network topology as needed

[51]. For example, during periods of high network utilization certain bandwidth-

consuming services such as large file transfers, video streaming, etc. can be

load-balanced over dedicated channels. In other scenarios, such as during an

31

emergency like fire alarms service such as VoIP can take control of the network

i.e. telephony taking precedence over everything else. Figure 3.1 illustrates a

simplified scheme for SDN.

Figure 3.1 Simplified SDN Scheme

3.2 Southbound Interfaces and Protocols

In order to configure the forwarding in the data plane, an SDN controller needs

to have a communicating with the forwarding devices. The family of protocols used for

communicating is called southbound interfaces. There are several well-known

southbound interfaces, e.g., OpFlex [102], POF [46], ForCES [16], and OpenFlow [88].

The leading southbound protocol is OpenFlow, supported by Cisco, HP, Juniper, and

IBM. Complementing the southbound interfaces, there are southbound protocols such

as Open vSwitch Database (OVSDB) and OpenFlow Management and Configuration

Protocol (OF-CONFIG) to control the operations of the forwarding devices (e.g.,

tunneling, shutting down a network port, and queue management) [97]. In this section,

we review OpenFlow and OVSDB, the southbound interface and protocol used in our

research.

32

3.2.1 OpenFlow

The most popular southbound protocol, OpenFlow, was founded at Stanford

University in 2008, and is currently managed by the Open Networking Foundation

(ONF) [83] and become. OpenFlow is the communication protocol that allows the SDN

controller to directly manage the data plane and install forwarding decisions on the

network devices. The controller can create, remove, and also modify flow table entries

in the switch using this protocol. The controller deals with the OpenFlow switch via the

secure channel. The secure channel is one of the interfaces to make the connection from

each OpenFlow switch to the Controller. This interface is used in managing and

regulating the switch by the Controller, informing the events via the switch and sending

packets through it. The interface may vary relying on OpenFlow switch implementation.

However, standardized OpenFlow protocol is needed in sending each message through

the secure channel need.

Figure 3.2 OpenFlow Architecture

As illustrated in Figure 3.2, an OpenFlow switch is a software switch that

consists of one or more pipelined flow tables, a group table, which performs packet

lookups and forwarding, and an OpenFlow channel to an external controller [71]. The

flow table is essentially a lookup table with match fields and actions and is processed

33

like a pipeline. Pipelined flow tables contain traffic flows, as defined later. A flow will

match the first flow table, and potentially be forwarded to a port or another flow table.

This is what we mean by pipelined; the flow match rules happen iteratively, like water

flowing through a pipe.

A traffic flow is a “sequence of packets sent from a particular source to a

particular unicast, anycast, or multicast destination that the source desires to label as a

flow” [83]. Flow classifiers are typically based on the 5-tuple consisting of a destination

address, source address, protocol, destination port, source port. The primary benefit of

flow-based routing is that it eliminates the need to do lookups to the routing table on a

per-packet basis. The route lookup can be done for the first packet in a flow, and then

the same transform applied to each packet in the sequence. Flow tables can easily be

implemented in hardware, and most vendors support some form of flow matching in

either software or hardware ternary content-addressable memory (TCAMs) [88].

Figure 3.3 Flow Entry Scheme

In the SDN model, OpenFlow serves as the data plane handling packet

forwarding operations for the OpenFlow controller [71]. The flow tables handle packet

lookups and forwarding. As shown in Figure 3.3, a flow entry consists of header fields

(e.g., source and destination IP addresses and ports) to uniquely identify each flow,

counters for collecting the stats of how many times a flow entry is used successfully,

cookies used for annotation by SDN controller, timeouts that control how long to keep

a flow entry in the flow table, and priority that helps the switch to choose amongst

multiple matches (if there are). Lastly, there are actions that determine the policy for

successfully matched packets. To clarify, when a packet arrives at the switch, the switch

starts looking for a match and the matched flow entry will determine the action, for

instance forwarding the packet on a specific port. Upon receiving a packet, a forwarding

34

device scans the flow tables, starting from table 0 (which is the mandatory flow table),

for matching flow entries. If there is no match in flow table 0, it will start looking for

the match in flow table 1 (if table 1 exists, the number of flow tables is configured by

the user). The process will continue until a successful match is found. In the case of

multiple matches in a single flow table, the entry with the higher priority will be picked.

The devices perform the action (i.e., forwarding the packet to a specific port) defined in

the flow entry. There is also a special flow entry called table-miss flow entry with the

priority of zero that matches all the packets. This entry catches all mismatched flows.

This entry may direct the device to drop unknown packets or send them to the controller.

The controller can install a new flow entry on the switches for the flow or can drop the

packet.

Think of this as an if-then rule in an L3 (layer 3) router. If the frame matches this

5-tuple, then we apply this action set. An L3 router is a router which performs

forwarding decisions based on the L3 Internet Protocol (IP) payload. An L3 packet

comes in and is sent to the ingress flow table, which is matched by the table-miss flow

entry. This flow entry will then forward the packet to the controller for a route lookup.

The controller finds the appropriate next-hop and the proper network interface, and

pushes a new flow entry to the OpenFlow switch for this packet and forwards it out the

appropriate interface. The next packet in that flow will match the flow entry that was

just pushed down into the OpenFlow switch, which will then apply the action to the

packet forwarding it out the same egress interface the previous packet was sent to and

applying the same action. Only the first packet in a flow would cause a route lookup,

speeding up packet processing. [88]

3.2.2 OpenFlow Flow Table

The flow table is essentially a lookup table with match fields and actions and is

processed like a pipeline. When the frame ingresses the port it is processed by Table 0

by the highest-priority matching flow entry. This flow entry will contain an action set

which can either output the frame to a specific port, apply actions, or send the frame to

another table. In the event of a table miss the frame is dropped by the switch. A table

miss happens when there is no matching rule in the table to match the frame. Each Flow

Table contains the following fields [71]. Recall that a flow router consists of a lookup

35

table and an action set; this is the lookup table that matches on various fields in the

packet header.

Table 3.1 OpenFlow Flow Table Fields

Type Description

Match Fields The match criteria for frames. Consists of header data and

metadata information. Match fields are placed on the flow table in

order to define the packet to which an action is to be performed.

This contains the 5-tuple information and some additional criteria

that can also be used.

Priority The match priority. Matches occur in priority order. Useful for

defining exception entries and default entries in the table pipeline.

Counters Counts the number of matches.

Instructions Defines what is to be done to the frame after a match; there are

one or more of these.

Timeouts Defines how long a flow can exist in the switch. A soft timeout

defines how long the flow lives if a matching frame has not been

seen. A hard timeout defines how long a flow lives no matter the

match count.

Cookie Controller defined field. This is not used in packet processing but

is useful for filtering flow statistics.

3.2.3 OpenFlow Messages Types

There are three general types of OpenFlow messages: controller-to-switch,

asynchronous, and symmetric. The controller uses the controller-to-switch messages to

query information from, transmit packets to, or configure the switch. Normally, the

controller initiates the controller-to-switch message with or without being required to

send a response from the switch. On the other hand, asynchronous messages are sent

without solicitation from the controller. Examples of these include packet-in messages,

flow-removed, port-status, and packet-out messages. Symmetric messages require a

response from the receiving party. Examples of these are hello, error, echo, and

experimenter messages. [71] OpenFlow defines a specification that one can use to talk

36

to OpenFlow switches, and this technology will be utilized throughout this thesis to

provide the mechanism to insert flows into these switches.

3.3 SDN Controller for the Control Plane

In the SDN architecture, the controller works as a brain of the network and it is

where the control plane resides as depicted in Figure 3.1. A controller is a software that

serves as a central control point that overlooks the network and through which

applications can access and manage the network. When the controller is said to be a

central point of the network, it is only meant to be logically centralized. The controller

software is typically deployed on a high-performance server machine, but to distribute

the load or to ensure high availability and resilience, more servers may be involved and

connected in various topologies [29].

The controller is responsible for the following tasks:

 Device discovery: the controller takes care of the discovery of switches and end-

user devices, and their management.

 Network topology tracking: the controller investigates the links

interconnecting devices in the network and keeps a view of the underlying

resources.

 Flow management: the controller maintains a database mirroring the flow

entries configured in the switches it manages.

 Statistics tracking: the controller gathers and keeps per-flow statistics from the

switches.

It is important to emphasize that the controller does neither control the network

in any way nor does it replace any networking devices. Even the basic switching or

routing functionality has to be provided by specific applications that approach the

network through the controller. Communication with networking devices is realized

through a southbound interface, for which Open SDN promotes the OpenFlow protocol.

These interfaces are used to configure and manage the switches and to receive messages

from them. The connection is realized via a secure channel and depending on the setting

is either encrypted or unencrypted.

Applications communicate with the controller using a northbound interface.

Through this interface, they retrieve information about the network and send their

requests, while the controller uses it to share information about occurring events.

37

Depending on the implementation, the interface may be low-level, providing unified

access to individual devices, or high-level, abstracting much of the underlying layer and

rather presenting the network as a whole. There is no standard for the northbound

interface and every controller implements its own APIs – be it Java API, Python API,

REST API [27] or else. This current lack of a standard northbound interface makes it

difficult to create controller independent applications [29].

3.4 Software Switch for the Data Plane

A summary of command software switches which are also used for

experimentation and new service development were given in Table 3.2. Detailed

expression of two well-known software switches presently available is present in the

below sub-session.

Table 3.2 Common OpenFlow Software Switches

3.4.1 Open vSwitch

OpenFlow may be deployed either at the software level or hardware level onto

forwarding devices in the data plane. More specifically, many well-known networking

vendors like Cisco, Juniper, IBM, and HP, support OpenFlow, either with a dedicated

product or running an OpenFlow software switch on top of their switches. Open vSwitch

is one of the software switches implemented to support OpenFlow which can be installed

to enable OpenFlow [71]. Open vSwitch is a multilayer software switch that is intended

to function as a virtual switch. Open vSwitch supports all versions of OpenFlow from

1.0 to 1.5 as well as GRE tunneling, queues, and so forth. The core of Open vSwitch is

the switch daemon (ovs-vswitchd). This daemon tracks statistical queries and flow

management internally on the switch, and also handles communication with external

devices and services [93]. For management and configuration, in parallel with

38

connectivity to the OpenFlow controller, it is possible to configure and control the Open

vSwitch via ovs-vsctl and ovs-ofctl. ovs-vsctl is a command line tool to configure ovs-

vswitchd by providing an interface to its configuration database, while ovs-ofctl is a

command line tool for monitoring and administering Open vSwitch. Moreover, ovsdb-

monitor is a tool to view flow tables and databases of Open vSwitch. As illustrated in

Figure 3.4, ovsdb-server relies on the OVS Management protocol to communicate with

Remote Open vSwitch db (a database maintained by Open vSwitch to store its

information). Unlike flow entries in the switch, the OVSDB configuration is preserved

even after the switch restarts.

Figure 3.4 Simple Open vSwitch Architecture

 3.4.2 OfSoftSwitch (CPqD)

The OfSoftSwitch13 (CPqD) [89] is another switch that is widely used in the

research community. It is an experimental switch forked from the Ericsson Traffic Lab

1.1 SoftSwitch implementation with changes in the forwarding plane to support OF1.3

[37]. The Ofsoftswitch13 is running in the user space and it also supports multiple

OpenFlow versions [89]. Ofsoftswitch13 supports a variety of OpenFlow features but it

has recently run into some compatibility issues with the latest versions of Linux (Ubuntu

14.0 and beyond) and developer support has also stagnated. It comes packaged with the

following tools to control and manage the data plane:

 OfDatapath: The switch implementation.

 OfLib: A library for converting to/from OF1.3 wire formats.

 DPCTL: Console tool to configure the switch.

39

 OfProtocol: A secure communication channel with the controller.

All this makes it a complete alternative to the OVS. However, the authors of the

switch state the following, “Despite the fact the switch is still popular for adventurers

trying to implement own changes to OpenFlow, support now is on a best-effort basis.

Currently, there are lots of complaints about performance degradation, broken features,

and installation problems.”[97]. The switch still has one of the best support for OF1.3

features among the available soft-switches, specifically the optional features like meter

tables, etc., which makes it an attractive candidate to get hands-on with. Additionally,

the soft switch supports a management utility called Data Path Control (Dpctl), to

directly control the Open Flow switch including the flow addition and deletion, query

switch statistics and modify flow table configurations.

3.5 Flow Removal and Eviction

Flows can be removed from the controller in three ways: at the request of the

controller, by expiration, or via the switch eviction mechanism. [71] The Flow switch

expiration mechanism defines a hard and an idle timeout. The idle-timeout causes

eviction if and only if no frames have been seen for the duration. The hard-timeout

causes eviction no matter if matches have been seen. The controller can also send a

DELETE message, causing flow removal. The flow switch eviction mechanism lets the

switch evict flows in order to reclaim resources. Upon removal, a FLOW REM message

may be optionally sent if the SEND FLOW REM flag is set in the flow entry. This

message is used to inform the controller that flow has been evicted so it can either keep

statistics or make decisions based on this information.

3.6 Chapter Summary

This chapter considered the software-defined networking technologies in detail.

The northbound and southbound communication interfaces allow for several key

protocols to be used in the SDN framework. Protocols such as OpenFlow on the

southbound and RESTful API on the northbound controller interfaces have seen

significant adoption in both academic and industry research. In addition to

communication protocols, recent years have also seen the development of several key

controller platforms aimed at furthering the SDN paradigm and bringing substantial

technical variety for researchers and operators to experiment and explore.

40

CHAPTER 4

END-TO-END QUALITY OF SERVICE

Quality of Service (QoS) in SDN is an area of ongoing research and has been

increasingly becoming interested in the research community. There is no standard or

formal definition of QoS. But, there are a number of definitions at the communication

level where the notion originated to describe certain technical characteristics of data

transmission. In this chapter, the traditional concept of QoS at the network level is

introduced, and some of the interesting research works are summarized in the area of

QoS in SDN. Moreover, a taxonomy of the applications and their QoS requirements is

presented in this chapter.

4.1 The Quality of Service

Quality of Service (QoS) is the ability to satisfy the requirement of specific

traffic. Lots of today's network applications require certain QoS guarantees. For

example, an application like video streaming requires a small delay but the data

communication requires less packet loss rate since it is less sensitive to delay. A failure

to meet this standard might lower the Quality of Experience.

Standard Internet Protocol (IP)-based networks provide network services based

on the “best-effort” delivery model. There are no bandwidth or latency guarantees in the

“best-effort” delivery model since the model offers a point-to-point delivery service to

deliver data to their destinations as soon as possible. The highest guarantee the network

provides is reliable data delivery by using protocols, such as TCP. Although this is

acceptable for traditional applications such as Telnet and FTP, this is inadequate for

applications requiring timeliness guarantees.

Increasing bandwidth is a common solution to adequately accommodate real-

time applications like VoIP, but it is still not adequate to sidestep jitter during traffic

bursts. IP services must be supplemented to provide some appropriate level of quality

for real-time applications. Typically, this requires extending the network software to

provide a certain level of quality in potential packet loss, jitter and delay. That is exactly

what Quality of Service (QoS) protocols are designed to do. Although QoS provides the

ability to manage bandwidth, it can not create bandwidth. The network administrator

41

can configure the QoS properly and used more effectively to meet the wide range of

application requirements. The main goal of QoS is to provide some level of

predictability and control beyond the current IP “best-effort” service.

4.2 Applications QoS

At the present time, the key concept of QoS extends from the communication

level up to the application level, in order to map QoS application requirements into low-

level QoS parameters. So far, QoS has been specified in terms of system resources

(CPU, memory utilization) or network resources (bandwidth, delay) and the network

infrastructures have been deployed to support real-time QoS and controlled end-to-end

delays.

4.3 QoS Provisioning in Traditional Network

QoS provisioning over the Internet is essential to ensure high-quality

performance for different applications. There are two major approaches for supporting

QoS into IP based network:

 Resource reservation: Resource reservation is one of the approaches to provide

per-flow end-to-end QoS guarantee by allocating network bandwidth resources

to guarantee QoS for a specific flow (e.g., a video streaming session). According

to an application's QoS request, the network resources are allocated and subject

to bandwidth management policy.

 Prioritization: Prioritization is one of the approaches to classify the network

traffics and allocate network resources according to bandwidth management

policy criteria. To enable QoS, network elements give preferential treatment to

classifications identified as having more demanding requirements.

Even the different applications running on the same distributed system may have

different QoS requirements with different parameter values. Moreover, some of these

QoS parameters may be time depending but may not be mutually independent. There

are a number of different QoS protocols and algorithms to accommodate the need for

these different types of QoS:

 ReSerVation Protocol (RSVP) [79]: RSVP is a transport layer protocol which

can provide the signaling to enable network resource reservation. By using

RSVP, the receiver initiates network resource reservations by sending a

42

message, and the amount of reservation guarantees the satisfaction of bandwidth,

timing, and buffer size constraints. Along the chosen path to the sender,

reservation is established in a soft state and set aside the required resources. The

soft state is refreshed periodically by the receiver or else it times out canceling

the reservation. RSVP typically used on a per-flow basis and also used to reserve

resources for aggregates.

 Differentiated Services (DiffServ) [12]: DiffServ was developed to provide a

coarse and simple way to categorize and prioritize network traffic flow

aggregates. As a first step, DiffServ classifies all flows into a limited number of

classes and define a different “per-hop behavior” for each class. To define per-

hop behaviors, it takes 6 bits from the Type-of-Service (TOS) field in the IP

header. Then, a certain profile of traffic is created by the clients and pay it to the

network provider. Client packets are marked by the edge routers. When the

packets arrive at the core router, the core router will know what to do by seeing

the 6-bit per-hop behavior code from the IP header.

 Multi-Protocol Labeling Switching (MPLS) [58]: MPLS is data forwarding

technology that provides bandwidth management for flow aggregates via

network routing control according to labels in packet headers.

 Subnet Bandwidth Management (SBM) [74]: SBM is a signaling scheme that

enables categorization and prioritization at the data link layer (Layer 2) on shared

and switched IEEE 802 networks.

4.4 QoS Provisioning in Software-Defined Networking

Despite the effectiveness of QoS-guarantee provided by IntServ and DiffServ,

the QoS guarantee remains a challenge on a large scale. This challenge fundamentally

conceptualizes to resource management and traffic directing. The current Internet

architecture is based on distributed networking protocols running on network elements

(e.g., routers and switches). The use of distributed protocols and coordination of changes

in conventional networks remains incredibly complex to configure and policy on the

underlying network hardware to enable multiple services from traffic routing and

switching. Keeping the state of several network devices and updating policies becomes

extra challenging when increasingly sophisticated policies are implemented through a

constrained set of low-level configuration commands on commodity networking

43

hardware. As a result, frequently misconfigurations such as changing traffic conditions

require repeated manual interventions to reconfigure the network, however, the tools

available might not be sophisticated enough to provide enough granularity and

automation to achieve optimal configurations.

4.5 QoS Support in Different Versions of OpenFlow

OpenFlow has supported the notion of QoS since the beginning. However,

support has been limited. As new versions of OpenFlow arrived over the years, each

new release of OpenFlow brought new features or updated existing ones. In this

subsection, we summarize what changes each OpenFlow specification made regarding

the QoS features. The earliest versions of OpenFlow OF1.0 - OF1.1 supported queues

with minimum rates. OF1.2+ started supporting queues with both minimum and

maximum rates. OpenFlow queues have broad support across the board. Most of the

popular software switch implementations (e.g., OVS and CPqD OfSoftSwitch) and

many hardware vendors (e.g., HP 2920 and Pica8 P-3290) support OpenFlow queues.

Table 4.1 QoS Related Features in Different OpenFlow Versions

OpenFlow Specific Features

1.0 Enqueue action, minimum rate property for queues and new header

fields

1.1 More control over VLA and MPLS

1.2 Maximum rate property for queues and controller query queues from

switches

1.3 Introducing the meter table, rate-limiting and rate monitoring feature

1.4 Introducing several monitoring features

1.5 Replacing meter action to meter instruction

OF1.3 introduced the concept of meter tables to achieve more fine-grained QoS

in OpenFlow networks. While queues control the egress rate of the traffic, meter tables

can be used for rate-monitoring of the traffic prior to output. In other words, queues

control the egress rate and meter tables can be used to control the ingress rate of traffic.

This makes queues and meter tables complementary to each other. OpenFlow switches

also have the ability to read and write the Type of Service (ToS) bits in the IP header. It

is a field that can be used to match a packet in a flow entry. All these features collectively

44

enable the network administrator to implement QoS in their networks. The following

Table 4.1 summarizes the QoS related features in OpenFlow versions.

4.5.1 Queues

As mentioned earlier, the OpenFlow protocol described a minimum rate-limiting

queue in OF1.0 and a minimum and maximum rate-limiting queue in OF1.2. According

to the OpenFlow specification, OpenFlow uses queues on switches but does not handle

the queue management on switches. The management of queues on the switches happens

outside of the OF protocol, and the OF protocol itself can only query the queue statistics

from the switch. There are two protocols to provide the queue management task

(creation, deletion, and alterations) in OpenFlow-enabled switches: OF-Config and

OVSDB. Besides, there is standard queue management provided by any OpenFlow

controller [93].

4.5.2 OVSDB

OF-Config and OVSDB are two southbound protocols to control the operations

of the forwarding devices other than the forwarding decisions. In particular, OVSDB

manages switch operations like tunneling, switch port status, queue configuration, and

QoS management [93]. OVSDB uses many tables to manage the Open vSwitch. These

tables include the flow tables, port tables, NetFlow tables, and others. Similarly, it

maintains tables for QoS and Queues. While most of the other tables are root-set tables

of the OVSDB schema, i.e., the table and its entries are not automatically deleted if it

cannot be reached. Thus the QoS and the queue tables exist and can be altered

independently, whether or not they are referenced by a port. The port table is related to

a QoS table and an interface table. The relation with the interface table is mandatory,

meaning that each port has to be associated with an interface. The relationship with QoS,

however, is optional. A port may exist without a QoS setting attached to it. A port can

have a QoS table which may have multiple queues assigned to it.

Once the QoS and queues have been set up on a switch, flows can be directed to

a particular queue using the OpenFlow set queue action. This action will forward the

flows that match the matching criteria to the mentioned queue. If more than one flow

goes through the switch at the same time, the aggregate rate of the flows will be

controlled at the egress according to the defined min rate and max rate by the queue. Let

45

us dive a little deeper into how the queues are implemented in the OpenFlow protocol

and OVS.

The OpenFlow specification [71] states the following properties about queues:

 min rate: The guaranteed minimum data rate for a queue. The capacity is shared

proportionally based on each queue min rate. Once the min rate is set, the switch

will prioritize the queue to achieve the stated minimum rate. If there is more than

one queue in one port, with a total min rate higher than the capacity of the link,

the rates of all those queues are penalized.

 max rate: The possible maximum data rate allowed for a queue. If the actual

rate of flows is more than the stated queue’s max rate, the switch will delay

packets or drop them to satisfy the max rate.

While OpenFlow specifications mention these guidelines for the OpenFlow

compatible switches, it is left to the switch implementation to realize these features. The

Open vSwitch, which is based on Linux, uses the Linux Kernel's Traffic Control (TC)

program to implement queues.

4.5.3 Linux Traffic Control

Linux Traffic Control (TC) is a Linux utility used to configure traffic control in

the Linux Kernel. TC can be used to achieve the following in the Linux kernel:

 Traffic Shaping: It can be used to shape the transmission rate of the traffic going

through a Linux server or any other device. It can also smooth out any bursts of

traffic for better network behavior.

 Scheduling: By scheduling the packets, it is possible to achieve better network

behavior during bulk transfers. Reordering and scheduling of packets can also

be called prioritizing, which is a widely accepted phenomenon in QoS.

 Policing: Several network policies can be implemented in TC. This policing

occurs at ingress.

 Dropping: Traffic exceeding the defined bandwidth can also be dropped either

at ingress or egress, based on usage.

TC uses three types of objects to achieve this: Queuing Discipline (Qdisc),

classes and filters. Whenever the kernel needs to send any traffic to an interface, it

enqueues the traffic into a qdisc. Which is then sent to the interface by the qdisc later. A

simple qdisc is a simple FIFO queue. Classes and filters are used to implement more

46

sophisticated queuing disciplines like the classful and the classless queueing disciplines.

In OVS, there are two classful queuing disciplines, they are Hierarchical Token Bucket

(HTB) [9] and Hierarchical Fair Service Curve (HFSC) [63]. Both of these queuing

disciplines allow Hierarchical Queuing Disciplines and bandwidth borrowing.

Therefore, HTB will be used in this thesis for queue management.

4.5.4 Hierarchical Token Bucket (HTB)

Generally, the hierarchical token bucket (HTB) is a queuing discipline which is

intended to be a replacement for Class-Based Queuing (CBQ), a standard in older TC

implementations. To allow granular control over the outbound bandwidth on a given

link, HTB uses the concepts of multilevel token buckets. In the HTB algorithm, tokens

are generated at a fixed rate and stored in a fixed capacity bucket. If there is an available

token in the bucket, packets can be dequeued or sent to an output port. Within an HTB

instance, multiple classes may exist.

Figure 4.1 Sample HTB Class Hierarchy

Figure 4.1 demonstrates a simple HTB hierarchy for solving the following

problem:

“Two customers A and B are connected to the internet via the same connection.

We need to allocate 40Kbps and 60 Kbps to A and B respectively. As bandwidth needs

to be subdivided into 30Kbps for WWW and 10Kbps for other applications. Any unused

bandwidth should be shared among the two customers.” [91]

In this example, 40Kbps is assigned to A. If A’s bandwidth usage for WWW is

less than the allocated bandwidth, the unused bandwidth will be used for other traffic if

Main Link

Link A Link B

WWW SMTP

47

demanded. The sum of A’s WWW and other traffic will not exceed 40Kbps. If A were

to request less than 40 kbps in total, then the excess would be given to B. However, only

two levels of hierarchy can employment in OpenFlow Queue implementation because a

child class of a root cannot have any children. The common important properties of HTB

classes are as follow:

 rate: It is the maximum guaranteed rate for this class and its children. It is

equivalent to a Committed Information Rate (CIR).

 ceil rate: It is the maximum rate at which this class is allowed to send.

 priority: It defines the priority of the class where the class with higher priority

(priority 0 has the highest priority) is offered idle bandwidth first. This

prioritization should not affect other classes' guaranteed rate.

In OVS, the ovs-vsctl command is used to create queues. This command creates

an entry in OVSDB and then implements it in the switch using Linux TC. An example

of creating QoS and queues in an OVS port is shown below:

Figure 4.2 Queue Implementation Example

Figure 4.2, shows how to create the example QoS and queues in port eth1 of

switch s1. It is shown as new entries in the Queue table and QoS table in OVSDB. Then,

OVSDB puts a relation between the newly created QoS entry and entry eth1 in Port

table. Consequently, eth1 should behave according to rules stated in this QoS. The

switch invokes the TC application during this process to create qdisc and classes in the

background.

4.5.5 Meter Tables

The meter table is a new feature that was introduced in the OpenFlow protocol

in OF1.3. Unlike queues which are used to control the egress rate, meter tables are used

48

to monitor the ingress rate of the flows [85]. A meter table contains meter entries,

defining per-flow meters. Meters are associated with flows rather than ports. Flow

entries can specify meters in its instruction; the meter controls the aggregate rate of all

the flow entries associated with it. Per-flow meters enable OpenFlow to implement

different QoS techniques such as rate-limiting. It can be combined with per-port queues

to implement complex QoS frameworks like DiffServ.

Each flow that is attached to a meter is required to pass through the meter and

meter bands before it gets forwarded. The meter measures the rate of each flow that

passes through, giving options to impose operations based on rates with the help of

Meters Bands.

A flow is not required to attach to a meter entry, it is up to the developer to

specify which flows, or type of flows that should be attached to a meter entry and passed

through the meters. A flow can also go through multiple meters. It cannot be attached to

multiple meters at the same time, but it can be used in succession. This is done through

different meter entries in different flow tables.

A meter table entry consists of the following components:

 Meter Identifier: It is a 32-bit unsigned integer identifier which is used by the

flows to uniquely identify which meter entry it belongs to.

 Meter Band: It is the meter that measures the rate of each incoming attached

flow, but it is the Meter band that hold the instructions and executes the

operations based on the measured rate of the flows. Each Meter band contains

the instructions to process the associated packets on what to do when a flow

reaches a set rate. The meter band applies actions when the flow-rate is greater

than the set rate of the meter. [85]

 Counters: It is a simple counter that is updated every time a packet is processed

by a meter. It is mainly for statistical purposes.

A meter can define multiple meter bands, although the only one-meter band may

be applied each time the packet passes through the meter. In cases where a meter has

multiple Meter bands defined, only the Meter band with the highest set rate still being

below the current measured flow rate is applied. In cases where the flow-rate is lower

than any Meter band rates configured, no actions will be applied.

There are two band types to define how a packet would be processed; these are

drop and dscp remark. Bands effect on the traffic that exceeds the defined rate. The drop

49

band drops the packets that exceed the rate specified in the band's rate. It can be used to

define a rate-limiting band. The DSCP remark band, on the other hand, is used to

increase the drop precedence of the DSCP field in the IP header. It can be used to

implement DiffServ.

4.6 QoS in SDN Controllers

Several OpenFlow controllers provide additional tools and platforms to help

users with queue configuration. Here, four well-known open-source OpenFlow

controllers are described with a review of their QoS support [39].

 Floodlight [94], maintained by Big Switch Networks, is a well-known open-

source SDN controller in the Java programming language. For queue

configuration and management, a QoS module [72] is built on top of Floodlight

as a community module which takes advantage of OpenFlow 1.0 queue support.

Another module developed is QueuePusher [55]. It controls queue configuration

and management using the Floodlight API [39].

 Ryu [96] is a component-based SDN controller implemented in the Python

programming language. One of the main advantages of Ryu, unlike many other

SDN controllers, is that it supports all OpenFlow versions from 1.0 to 1.5.

Moreover, because of its component-based design and full OpenFlow version

support, it is often used for the fast prototyping of an SDN module. Ryu provides

an API to configure and manage queues in Open vSwitch using OVSDB.

 OpenDaylight (ODL) [95] is a Linux Foundation collaborative open source

project with the goal of promoting SDN. Many of the proprietary SDN

controllers like the Brocade SDN controller are based on ODL. Similar to Ryu,

ODL also has an OVSDB plugin that helps users with queue configuration and

management [39].

 Open Network Operating System (ONOS) [90] is a community open-source

project hosted by Linux Foundation with the goal of creating a highly scalable,

highly available, and high-performance SDN operating system. Currently,

ONOS supports metering in OpenFlow. However, unlike the aforementioned

SDN controllers, ONOS QoS support lacks many features and is not fully

complete [39].

50

The following Table 4.2 summarizes the QoS related features in

OpenFlow controllers.

Table 4.2 QoS Related Features in Different OpenFlow Controllers

Controller Features and Modules

Floodlight QoS module, QueuePusher module

Ryu OVSDB API

OpenDayLight OVSDB API

ONOS OpenFlow Metering (limited QoS support)

In the experiment, the Ryu controller is chosen, mainly due to its component-

based architecture, the powerful northbound API, and excellent documentation for QoS.

This choice is further justified in Chapter 6.

4.7 Chapter Summary

This section presented the notion of QoS including origin and progress. It is

learned that the various type of techniques can be used to implement QoS systems in

SDN, various challenges faced by the SDN community and suggested possible solutions

to some of the most pressing issues.

The emerging of various network services carried by the Internet, competing for

the network resource and most of which require QoS performance guarantees. It is

difficult to deliver the newly emerging network services in a flexible way and to fulfill

the huge amount of demand with better performance in a current network. To solve these

problems, traffic engineering schemes need to consider the mix of user applications, and

the performance requirements the end-users may experience as a consequence of

individual service improvement.

SDN aims to address the problem of flexibility in the present-day internet

architecture and provides a software-driven approach for new techniques and protocols

to thrive in its ecosystem. The biggest advantage of SDN is that it is easier to adapt to it

and move away from the existing “rigid” internet setup. But, for SDN to replace the

current architecture of the real-world network, it needs to provide very fine-grained

control to the network administrators to control the quality of services along with several

other enhancements.

51

CHAPTER 5

END-TO-END DYNAMIC BANDWIDTH RESOURCE

ALLOCATION BASED ON QOS DEMAND IN SDN

SDN and QoS themselves are just concepts. A number of technologies,

techniques, and applications have to work together to realize them. All the different parts

of the puzzle have to fit together to create an SDN network with QoS capabilities. In

this chapter, the resource allocation scheme is proposed to support Quality of Service

(QoS) for various types of traffic while maintaining the network link utilization as much

as high. The architecture of a resource allocation scheme based on Software Defined

Networking (SDN) is presented that integrates the proposed scheme to provide better

performance.

5.1 Architecture of Proposed Resource Allocation Scheme

In this section, the overall architecture of the proposed resource allocation

scheme based on SDN is described in Figure 5.1.

Figure 5.1 Architecture of Proposed Resource Allocation System

The system includes five main modules: topology discovery module, network

monitoring module, Delay Estimation module, QoS routing module, and Congestion

52

Handling module. Each module has its own functions and they are linked with each

other in the proposed scheme. Below we will explain the workflows of the proposed

system modules individually.

5.1.1 Topology Discovery Module

This module is used to discover the SDN switches connected to the controller

and have knowledge of the links between them to calculate a route for the network

connection. The route cannot contract without discovering the information about the

network links, hosts and switches in the network. Furthermore, keeping up-to-date

visibility of the topology is a critical function. The network topology changes whenever

the switches leave and join the network. Consequently, it may affect routing decisions

that the controller has to make continuously.

In OpenFlow-based SDN, after an OpenFlow switch joins to the network, it

establishes a TCP connection with the SDN controller. Afterward, the SDN controller

requests the switch for its active ports and their respective MAC addresses using the

OFTP_FEATURE_REQUEST message. The switch replies with an

OFTP_FEATURE_REPLY message containing the requested information which is

needed for topology discovery. Although there is no specific standard for discovering

the topology of an OpenFlow-based SDN, most SDN controllers’ implementations

follow the OFDP protocol relying on LLDP packets [62]. Therefore, the topology

discovery module firstly sent out the Link Layer Discovery Protocol (LLDP) packets to

all the connected switches through packet_out messages to acquire topology and

connection information. After that, the messages instruct the connected switches to send

LLDP packet_out messages overall its ports to other connected devices. Then this

message would be delivered to the controller as packet_in messages since the switch

does not have a flow entry for this LLDP message. These packet_in messages contain

information about the switch’s port that the specific host connects to. SDN controller

creates a connection based on these packet_in messages. In this way, global topology

information can be gained. LLDP messages are periodically exchanged to check whether

the connection links go up or down. The collected information of switches and links,

including MAC and IP address of all the connected hosts in a database called topology

database. Figure 5.2 shows the detailed steps of how the network detection module

works with the SDN controller to discover the network topology.

53

Figure 5.2 Topology Discovery Module

5.1.2 Network Monitoring Module

This module is used to do real-time measurements of the network. It is very hard

to calculate the route without knowing link load information for all the relevant links.

However, SDN solves the problem and makes it much easier for both users and operators

because the controller already has the global network view and access to all the

information of topology. The controller keeps track of how much bandwidth is allocated

in the network.

In order to achieve some information like link utilization and the network

topology updates, the controller listens to asynchronous messages such as

OFPT_PACKET_IN message, OFPT_FLOW_REMOVED message and

OFPT_PORT_STATUS message from each switch. The monitoring module tracks the

amount of traffics by periodically polling flow statistics such as received and transmitted

bytes or packets from all connected switches and takes a snapshot of the current network

status. The module calculates link utilization and available bandwidth for bandwidth

allocation. To calculate the link utilization of each link i for every time unit can be

computed by using the number of transmitted bytes from the port statistic as follows:

LUi = [B(i, tj +1) –B(i, tj)] / [tj +1) – (tj)] Equation 5. 1

Where tj, tj+1 indicate the two consecutive responses time and the number of

transmitted bytes reported at time tj for link i is denoted as B(i, tj). B (i, tj + 1) indicate the

54

number of transmitted bytes reported at time tj+1. Then, the available bandwidth (ABWi)

of each link can be computed simply by subtracting the link utilization (LUi) from the

network bandwidth capacity (BWi) as follows:

ABWi = BWi - LUi Equation 5. 2

After calculating available bandwidth, the monitoring module sends this

information to the QoS routing module to compute routes to deliver the traffic form the

source node to the specific destination node. Figure 5.3 depicts the work flow of network

monitoring module in detail.

Figure 5.3 Network Monitoring Module

5.1.3 Delay Estimation Module

This module is responsible to estimate a real-time delay of the network. This

module adopts the LLDP protocol which is described in the topology discovery module

since the SDN controller discovers all the links, in both directions, to updates its view

of the network periodically. Figure 5.4 shows the workflow of the delay estimation

module.

55

Figure 5.4 Delay Estimation Work Flow

At first, the controller sets the timestamp at the beginning of the LLDP data

transmission and then subtracts the received timestamp to estimate the delay from the

controller to the switch S1. Then, from switch S1 to switch S2, and then report the delay

T1 to the controller, an example is shown in the thick black arrow of Figure 5.4. The

same inverse delay T2 consists of grey arrows. In addition, the controller-to-switch

round-trip delay consists of a light black arrow and a grey arrow. This part of the delay

is tested by the echo message, Ta, Tb.

To get the logic of T1 and T2, the measurement method is as follows: the data

from the Switches module are necessary. First, the LLDP packet is parsed from

Packet_in to obtain the source DPID and source port. Then, according to the data of the

sending port, the sending timestamp data in the port data is obtained, and the sending

timestamp is subtracted from the current system time to obtain a delay, and finally saved

to the graph data.

 After that, this module needs to test the echo round-trip delay between the

controller and the switch. The measurement method is as follows: the controller sends a

time-stamped echo_request message to the switch, and then parses the echo_reply

returned by the switch, and subtracts the sending time of the data part from the current

time to obtain the round-trip time difference. So the implementation of the timing and

parsing of echo_request is necessary.

56

After the calculation of the echo delay is completed, it is saved in the

echo_latency dictionary and is ready for subsequent calculations. After the delay data is

obtained, it is also necessary to calculate the delay of the link based on the data, and the

formula is:

T=(T1+T2-Ta-Tb)/2 Equation 5.3

5.1.4 QoS Routing Module

The main function of this module is to find the best path to alleviate network

congestion and improve the QoS of network applications such as media streaming and

online games which require strict QoS guarantees. In general, network providers

optimize their network performance in order to effectively fulfill customer demands

with traffic engineering (TE). Routing is a powerful tool of TE, and it can be used for

controlling network data flows. The aim of TE routing is to route network data flows as

much as possible by reserving the required bandwidth resource for each established

route. A routing engine needs to select a route between a source and destination for each

traffic flow.

This module uses the network topology information from the topology discovery

module and the traffic statistics from the monitoring module to compute multiple paths

and pushes the resulting computation as flow rules to the SDN switches. Route

calculation module calculates the shortest path tree from each source node to all the

destinations by applying the shortest path finding algorithm, Dijkstra.

This module uses Dijkstra’s shortest path algorithm [59] to find a set of candidate

paths between a pair of source and destination. Dijkstra’s algorithm calculates the

shortest path between two nodes on a network using a network topology graph. It can

assign a cost value to every node. Set it to zero for the initial node (source node) and

infinity for all other nodes. Firstly, the algorithm divides the nodes into two sets:

tentative and permanent. Then, it chooses nodes, makes them tentative, examines them,

and if they pass the criteria, makes them permanent. The outline of the Dijkstra’s

algorithm can be expressed as shown in algorithm 5.1, [2], [59]:

57

Algorithm 5.1: Dijkstra’s Algorithm

All the paths are stored in HashMap <key, value> form is used to store all the

paths, and later the controller will use to determine the routes for different types of traffic

with their QoS constraint. When a new flow arrives to the OF switch, it will send to the

controller if the OF switch does not have flow entry for it. According to the flow

information including in the packet header fields, the controller will select a suitable

path with a sufficient amount of bandwidth available for it and send back to the OF

switch as flow entries for packet forwarding.

Whenever a new flow with bandwidth request arrives, the controller allocates

the demand flow based on the current link utilization. After calculation possible path

lists, check the available bandwidth of the path which can be implemented by using the

statistic of the network monitoring module. If it is enough for the bandwidth guarantee

rate, the controller selects the path as the optimal candidate path for routing. If it is not

enough, the link is simply removed to avoid link performance degradation. After

selecting the routing path, the controller updates the flow table of the switches along the

path. Then, QoS mapping is implemented for QoS flow with a priority queue to provide

a bandwidth guarantee.

58

5.1.5 Congestion Handling Module

Over-demand of network resources can cause network congestion which may

lead to performance degradation. It is therefore imperative to assume that network

resources are sufficient to cater for the offered traffic most of the time. One way to deal

with congestion on the hardware side is to increase the bandwidth on links in the

networks. However, providing an oversupply in bandwidth is expensive and packet loss

in a large network like data centers is primarily happening on links that are not heavily

utilized on average. Hence, increasing the bandwidth would not solve the problem. The

reason for the losses can be found in the bursty nature of the network traffic which causes

congestion when multiple traffics flows transmitted on the same link produce high peaks

simultaneously.

The aim of the congestion control module is to provide network services to its

users that meet certain performance criteria, often represented by a set of QoS

parameters. One of the challenges in meeting QoS requirements is avoiding bandwidth

starvation of certain traffic types by others. Flow rerouting is one of the ways to deal

with the QoS degradation of the flows in the heavy network. A natural method for

congestion control is using the low load path. Such routing also achieves load balancing

of the network resources. The controller needed to reroute some of the current flows on

the bottleneck link is detected to mitigate the flow congestion. Figure 5.5 shows the

workflow procedure of the flow rerouting and the proposed flow rerouting algorithm

will introduce in section 5.2.4.

Figure 5.5 Workflow to Start the Flow Rerouting

Estimate the LU and identified the

bottleneck link

Detecting number of flow sharing a

bottleneck link

Choose one or more flows from the

bottleneck link

Starting the rerouting engine

59

To accomplish the best accommodation of resources possible, the rerouting

algorithm is implementing with a non-dominated sorting genetic algorithm (GA) while

focusing on rerouting the flows with the highest priority traffic. NSGA is an extension

of the Genetic Algorithm for multiple objective function optimization. NSGA-II [20] is

one of the most popular multi-objective optimization algorithms with three special

characteristics, fast non-dominated sorting approach, fast crowded distance estimation

procedure, and simple crowded comparison operator. NSGA-II can be roughly

expressed as the following steps. Algorithm 5.2 describes the outline of the NSGA-II

procedure in detail.

Algorithm 5.2: NSGA-II Algorithm

Step 1: Population initialization: Initialize the population based on the problem

range and constraint.

Step 2: Non dominated sort: Sorting process based on non-domination criteria

of the population that has been initialized.

Step 3: Crowding distance: Once the sorting is complete, the crowding distance

value is assigned front wise. The individuals in a population are selected

based on rank and crowding distance.

Step 4: Selection: The selection of individuals is carried out using a binary

tournament selection with a crowded-comparison operator.

Step 5: Genetic Operators Real coded: GA using simulated binary crossover and

polynomial mutation.

Step 6: Recombination and selection: Offspring population and current

generation population are combined and the individuals of the next

generation are set by selection. The new generation is filled by each front

subsequently until the population size exceeds the current population size.

Subsequently, the NSGA-II algorithm selects the flow with the highest priority

traffic and checks out if there is any other parallel route for this flow with enough free

capacity to carry its traffic. In the case that there is another possible path with sufficient

capacity, the flow will be routed through that route, sending the corresponding flow

entries to each of the OpenFlow switches. Once the flow with highest priority traffic has

60

been routed across another path, the process starts again, and, in the case that the

congestion still exists, the same procedure will be followed, moving the highest priority

traffic flows along another route.

5.2 The Proposed End-To-End Dynamic Bandwidth Allocation Scheme

A network is modeled as a graph G = (N, E), where N is a set of nodes and E is

the set of (directed) edges. Every edge (i, j) ∈ E has two associated properties: link

capacity cij reflecting the bandwidth available to the corresponding link and the user

required bandwidth rij. The link capacity is usually fixed, while the residual bandwidth

is varied based on traffic on the link. The main notations of the proposed scheme are

presented in Table 5.1.

Table 5. 1 Main Notations

Symbol Definition

G = (N,E) the network graph

N the set of nodes

E the set of (directed) edges

(i, j) ∈ E the link between switch i and switch j

Lbw the link bandwidth

Mbw the maximum bandwidth usage

D(s, d, r) the flow demand matric

s source

d destination

r the user demand bandwidth

Pij the path from switch i and switch j

Lu the link utilization

p priority

B the number of transmitted bytes

tj , tj+1 two consecutive responses time

A demand matrix D = D (s, d, r) expresses the traffic demand from node s to

node d in the network where all the links have required bandwidths equal or greater than

61

r. If the user demand can be accepted, the controller reserves bandwidth of r (Mbps)

along path Pij.

The outline of the proposed end-to-end dynamic bandwidth allocation scheme

based on user QoS demands are presented in Table 5. 2.

Table 5.2 Outline of the Proposed Scheme.

Input A network G (N, E) with necessary information e.g. link bandwidth

Flow demand D (s, d, r)

Output A feasible path pi or no route satisfying the demand

Steps For each D (s, d, r):

1. Find a feasible path satisfying QoS requirements of the flow.

2. Allocate bandwidth along the path.

3. Estimate the link utilization and identified the bottleneck link.

4. Reroute the highest priority flow.

The implementation of the proposed QoS routing scheme can be divided into

two levels; the controller and switch levels. The controller calculates the feasible path

based on the user’s demand QoS in Module 1 that is flow-based routing to provide the

QoS for the individual flow. Moreover, the flow rerouting algorithm is proposed in

Module 2 that is responsible for congestion management in flow-based routing at the

controller level of the proposed scheme.

5.2.1 Bandwidth Allocation at Controller Level

When a user wants a desire QoS such as bandwidth, the user can request the

controller by sending a request packet which includes the flow information such as the

source, destination and the required QoS factors such as the amount of bandwidth they

need and a delay tolerate value. When the controller receives the request packet, the

controller starts the routing engine and calculates the route for bandwidth allocation

according to the user QoS demand by using topology and monitoring engine.

Finally, the routing decision is issued by the per-flow routing policy. According

to the demand QoS factors of bandwidth and network conditions, path selection is

carried out for each flow which is advantageous to network resource orchestration and

QoS guarantee. The SDN controller seeks the feasible paths that satisfy QoS

62

requirements of flow based on user demand. Then, the SDN controller enforces the QoS

policy in the data plane.

5.2.2 Bandwidth Allocation at Switch Level

After calculating a feasible path for the request flow at the controller level, the

proposed system tries to provide network resources to the flow at the switch level by

taking advantage of the queue mechanism supported by OpenFlow protocol. Queuing

allows us to ensure that important traffic, applications, and users have precedence. Each

output interface can configure eight queues as the maximum number of queues per

interface and flow entries mapped to a particular queue is treated according to the

configuration of the queue. The controller maps the incoming flow according to its flow

demand into the pre-create queues, and it installs the forwarding rules on each SDN

switch over the determined path to support the QoS guarantee.

5.2.3 Module 1: Flow-based Routing

The hierarchy of the proposed QoS routing work flow has described in Figure

5.6.

Figure 5.6 Hierarchy of QoS Routing

Let us consider the network traffic as in three classes: two QoS classes and the

best-effort class (non-QoS). Whenever a new flow has arrived, the controller extracts

User request D (s, d, r)

Check the preference QoS class and the amount of bandwidth

Queue as policies and reserve bandwidth

If QoS class is bandwidth or BE, find

the maximum available bandwidth

path.

If QoS class is delay, find the

minimum delay path.

QoS Routing

63

flow information such as source node, destination node and request bandwidth. The

controller checks the flow priority information which can show the incoming flow is

QoS class types or best-effort class.

In the proposed scheme, the routing engine firstly finds the most feasible path

for required QoS. A feasible path can provide sufficient resource r to satisfy all the QoS

requirements of the flow. For example, if the incoming flow type is the bandwidth

demand QoS class or the Best-effort class, the QoS routing module chooses the

maximum available bandwidth path by calculating link utilization. For the minimum

delay demand QoS class flow, the QoS routing module calculates the link delay between

the source and the destination nodes. Then, choose the minimum delay paths in order to

meet the QoS requirement of the flow. After the path is calculated, the SDN controller

installs flow entries to each switch along the path and updates the flow database of the

switches along the path. Then, QoS mapping is implemented for QoS flow with a

priority queue to provide a bandwidth guarantee. Ovs Switch can forward the packet by

using the flow rule.

5.2.4 Module 2: Flow Rerouting

The proposed scheme attempts to avoid traffic congestion when a new flow is

added to the link. The accepted flows bandwidth is investigated by reserving the required

bandwidths (r) for incoming flows to know the maximum bandwidth usage (Mbw) by

Equation (5.4):

Mbw (new) = Mbw (old) + r Equation 5.4

After calculating the maximum bandwidth usage, the controller checks whether

the usage bandwidth exceeds a predefined threshold to identify the bottleneck link.

Identifying the network link bottleneck is very useful for both end-users and service

providers. By identifying the bottleneck link, the proposed system can eliminate paths

that have lower bandwidth and reroute the traffic over the bottleneck link to an

alternative path with the highest bandwidth by using QoS routing. If the link bandwidth

is greater than the predefined threshold value, we define the link as the bottleneck link

and reroute the highest priority flow from the bottleneck link to an alternative link that

has enough bandwidth for the rerouting flow.

64

If the link utilization exceeds a predefined threshold by allocating the new flow

requested bandwidth, the controller reallocates the network resources by using the

alternative path that has enough bandwidth to allocate the reroute flow. A typical routing

algorithm routes just one flow in each step while the proposed rerouting algorithm

reroutes one or more flows according to their priorities and reserved bandwidth to reduce

the packet loss rate and provides higher QoS performance to the users. The proposed

flow rerouting algorithm is presented in algorithm 5.3.

Algorithm 5.3: Rerouting Algorithm

Input: G=(N, E), Lbw, Lu of bottleneck links, flows on the bottleneck link, number of

paths

for flow in flows do:

extract the flow information (s, d, r, p)

list the flow ascending order according to p

end for

String FlowChoose ()

 for flow in listed flows:

 Chosen Flow = []

 Mbw -= r

 If Mbw > predefined value, then

 Chosen Flow += flow

 else return Chosen Flow

 end for

Invoke NSGA-II (Chosen Flow, number of paths)

 return optimal candidate path, max-Mbw

Reroute the flow to optimal candidate path

Update p by adding 1 //to prevent repeatedly rerouting

Update the flow table along the path

Queue in priority queue interface of each switch

Reserve request bandwidth along the path

65

5.3 Chapter Summary

It is difficult to deliver the newly emerging network services in a flexible way

and to fulfill the huge amount of demand with better performance in a current network.

Traditional routing cannot provide accessible performance for all traffic types, and it

can cause excessive link utilization in the network. Another common problem that arises

in networks that have to deal with large amounts of traffic is congestion. When a network

device is receiving more data packets than it can process, the packets are delayed or lost

which in turn reduces the overall throughput of the network. This certainly lowers the

performance of the services and leads to a dissatisfying end-user experience.

This chapter presents the proposed end-to-end dynamic bandwidth resource

allocation scheme design in detail. The proposed scheme work is based on the QoS

demand of the network users in the SDN network. We will demonstrate the effectiveness

of the proposed scheme will be shown on the emulated SDN network in chapter 7. The

details of individual experiments will be provided in-depth in the next chapter on

implementation.

66

CHAPTER 6

DESIGN AND IMPLEMENTATION OF THE PROPOSED

SYSTEM

This chapter covers the design for the implementation of the experiments.

Furthermore, essential modules of the developed SDN application are adequately

described to provide the reader an understanding of how the platform operates. This

chapter instantly begins with an introduction of the proposed end-to-end QoS

implementation, explains the applied SDN controller, and offers the mandatory

information relating to the technology and options used in the implementation.

6.1 The Proposed End-To-End QoS Implementation

Fundamentally, QoS can offer better service to certain flows. This is often done

by either raising the priority of a flow or carefully limiting the priority of another flow.

Once using congestion-management tools, the network administrator tries to lift the

priority of flow by queuing and servicing queues in different ways. Generally, the queue

management tool used for congestion avoidance raises priority by intentionally dropping

lower-priority flows before higher-priority flows. Policing and shaping give priority to

flow by limiting the throughput of different flows.

Generally, the type of flow must be identified to provide preferential service to

an individual flow. Common ways of distinguishing flows embody access control lists

(ACLs), policy-based routing, committed access rate (CAR), and network-based

application recognition (NBAR). The proposed approach has been implemented based

on policy-based routing.

6.1.1 Class of QoS

Each year the network service usages are growing and 2019 will be no different.

The services differ in their level of QoS strictness, that the service can be bound by

specific bandwidth, delay, jitter, and loss characteristics. On the other hand, the current

IP-based network faces significant challenges in providing some types of service

guarantees for various types of traffic. This has been a specific challenge for streaming

67

video applications, which regularly need a significant quantity of reserved bandwidth to

be useful.

According to a new report from Cisco [101], by 2019, online video is

accountable for four-fifths of worldwide Internet traffic. In order to provide a good

viewing experience, video streaming services have strict requirements on bandwidth and

delay. Since the Internet is designed to offer best-effort services (i.e., no guarantee on

bandwidth and delay) for cost efficiency as well as better reliability and robustness, it is

essential and difficult to provide a Quality-of-Service (QoS) guarantee for video

streaming services.

Another highly demanded service in the current network is VoIP. Compared to

video streaming, VoIP traffic does not consume a large amount of bandwidth but have

different and stricter QoS requirements. Using a voice service implies that users interact

with each other, since the service is rather sensitive to delays and jitter in the

communication, due to the bi-directional nature of a teleconference or voice call. For

instance, if the user must wait too long for the other user to respond, then the

conversation can end up, thus the experience is affected. The category includes

teleconferences and calls with and without video, and will simply be referred to as

Voice. Moreover, a category that covers the fundamental service which may include

HTTP, FTP, SNMP, PoP3 and Telnet can be specified as the best-effort service type.

Hence, these types of services are robust regarding network traffic conditions and not

nearly as sensitive to varying network conditions as voice and video are.

Table 6.1 Example QoS Types and QoS Requirement

Types Characteristics QoS requirement

Voice

Alternative talk-spurts and silence

intervals

Talk-spurts produce constant packet-

rate traffic

Delay <~ 150 ms

Jitter <~ 30 ms

Packet loss <~ 1%

Video Highly bursty traffic

Long range dependencies

Delay <~ 400 ms

Jitter <~ 30 ms

Packet loss <~ 1%

Best-effort

Poisson type

Sometimes bursty, or sometimes on-

off

Zero or near zero packet

loss

Delay may be important

68

This leads to three categories: Voice, Video and Best Effort. They will be the

basis for the traffic to study when determining the requirements for the network. Table

6.1 describes the example of QoS types and their requirements for network

communication [103].

Since the QoS is at the forefront of the present networking, the future internet

brings us the notion of user-based QoS in which QoS policies are based on a user as well

as application. Therefore, the user demand QoS approach is considered to draw the QoS

policies on our work. In the proposed approach, we differentiate the QoS traffic classes

based on these baseline QoS requirements as shown in Table 6.1. In order to allocate an

appropriate route for each traffic, we assume that network users register their

preferences of QoS demands to the controller. The controller maintains the registered

information and finds the most feasible path for each QoS demand. The possible options

for preferences QoS demands are minimum delay, bandwidth and default (best-effort).

Table 6.2 shows the available QoS classes in the proposed approach.

Table 6.2 Available QoS Classes

QoS class Applications

Minimum-delay

demand

Gaming , remote control application (haptic application),

VoIP

Bandwidth demand Multimedia streaming (voice, video), data storage

Best effort Telnet, FTP, HTTP

6.1.2 Flow Requirements

Individual flows may have certain network performance requirements, such as

bandwidth, delay, minimum error rate and so on. If a flow carries a significant video

stream, then it is of interest to forward the traffic down a path that supports the capacity

requirements. To make sure that the flow maintains its requirements in the future,

reservations would be necessary to prohibit other traffic streams to occupy resources on

the same route (QoS).

Since the SDN controller is the Policy Decision Point, it can be developed to

own full management of the incoming flows to the network. By programming the

69

controller to get the network topology information, it is possible to make forwarding

decisions based on its information regarding the flow and map this to the topology.

Information about particular flows must be predefined, for example, the minimum

bandwidth requirements of the flows. Additionally, the controller would also need to

store flow reservations in a database and maintain state.

6.1.4 Flow Priority

Among the network, the transmitted traffic may have totally different priorities

based on the user’s QoS-demand. An SDN controller is programmed to handle traffic

differently and assign priority to the flows. This can be realized either by using the

priority field within the flow rules or by maintaining state regarding the policy priority.

The prioritized traffic should be able to meet the desired QoS factor once it arrives to

the destination at the other end. Due to possible network capacity limitations, there

should be trade-offs once the requirement for capacity is higher than what the network

can offer. Therefore, prioritizing of traffic could be a mitigation strategy to confirm that

the highest priority traffic is distributed and received across the network without service

degradation too much then the lower priority traffic. The priority ranges from 1 to 16,

where 1 is the highest priority. Configuring the flow priority is the important factor for

the application, and it will become the primary factor when the network faces the

congestion, the top priority flow will reroute first.

6.1.5 Queue Implementation

This section is responsible for configuring queues on the output interfaces of the

switches and maintains the queue configuration information. As a maximum number of

queues per interface, each output interface can configure eight queues. For our study,

only three queues are created for each output interface of the switches. Flows are

classified into different levels and allocate network resources dynamically to provide

high QoS for each traffic. Different types of traffic will be transmitted through different

queues. For example, the QoS-flows will queue into the high priority queue to acquire

sufficient bandwidth resources since the cross-traffic queue has the lowest priority.

Rate guarantees can be classified into Soft QoS and Hard QoS. From the point

of implementation view, Soft QoS is more flexible but it does not provide very strong

guarantees. On the other hand, Hard QoS guarantees are rigid that reserves a portion of

70

the bandwidth to be used only by a specific flow. It has stringent policies on the

admission of the flow. If the required bandwidth is not available, the flow is rejected at

the ingress itself.

In the study, three different queues are set at a port and assign different priorities

to them. Therefore, one of the three queue priorities can be assigned for the different

QoS flows. The incoming flows are categorized into the three QoS priority classes (high,

medium, and low) and map with the priority queue according to their flow properties.

For example, services like voice and video applications which are particularly sensitive

to latency but less sensitive to packet loss can be mapped to the high priority queue. A

QoS policy rule is assigned to the QoS priority flow associated with the rule. However,

the QoS priority has differed from the queue priority. From the perspective of the flow

priority, bandwidth demand flows is set as the highest priority flow in the proposed.

When the controller finds the bottleneck link, the controller reroutes the flow based on

the QoS flow priority.

6.1.6 Policy Setting

Each application or client has its own set of requirements, typically defined in

their Service Level Agreements (SLAs). Quality-of-Service (QoS) requirements include

end-to-end bandwidth and latency among other attributes, as we discussed in the

previous session. This section will present the policy setting and policy lists. It will use

to calculate the route that can meet the QoS requirement of the network application as

the user demand. Before the connection setup, the user needs to register the required

bandwidth and favorable QoS demand factor. Based on this information, a policy will

draw to meet the user QoS-demand. The policy-setting will load at the start-up phase of

the Ryu controller. In the run-time phase, all of the incoming flows will be checked

against this list.

Each policy contains a pair of match conditions and actions. Match conditions

are defined to map a policy with a particular flow. The policy needs a minimum of one

match condition to figure for the QoS_policy. The policy list is applied to at least one

direction of the flow which means the different policies can fetch for each direction of

the flow. For instance, a host (h1) initiates a connection to host (h2), the policy-check

will run for h1-h2. After matching, the actions will follow. A policy can be designed to

71

have several actions. Each policy is configured to own priority and enqueue-id in

actions.

Table 6.3 Possible Policy List

QoS_Policy Match Action

1 user_ip or server_ip bandwidth_request = r Mbps,

set_priority = 1, set_queue = 2

2 user_ip or server_ip bandwidth_request = r Mbps,

set_priority = 8, set_queue = 1

3 user_ip bandwidth_request = 0 Mbps,

set_priority = 16, set_queue = 0

When a new incoming flow arrives, the controller will find a matching policy.

Table 6.3 lists the possible policy list. The example of the policy structure is as follow:

 If the incoming flow is a min_delay demand flow, it will against the QoS-Policy1

by reserving the user request bandwidth r.

 If the incoming flow is a bandwidth demand flow, it will against the QoS-Policy2

by reserving the user request bandwidth r.

 If the user does not make register for the QoS demand, the controller will draw

the default policy without reserving bandwidth.

When a flow is coming to the network, the network administrators define

policies according to the pre-register information of the users. The register information

of the users is stored in the policy list. The controller will make a forwarding decision

based on the specific policy. Whenever the incoming flows reach the controller, the

application will browse the policy list for it and check packet parameters against match

conditions. Once the policy is accepted, the application will then compile the policy into

flow rules, where it will configure the MAC source and destination addresses of the

communication entities as match conditions for the flow rules. After a policy is applied

and used in the network, it is keeping to a different list however further parameters are

added, such as chosen path and flow information. Figure 6.1 illustrates the logical design

of the policy storage with the forwarding decision process.

This list saves the enforced policies, that the controller keeps the state of every

running policy on each path within the network. The forwarding decision process will

72

examine this list if it is necessary to reroute a flow in the congestion handling process.

Despite this, it is necessary to notice that the figure only displays the policy process; the

controllers monitored the view of the topology and traffic influences the forwarding

decision process.

User-Input

Figure 6.1 The Logical Policy Storage

6.1.7 Forwarding Decision

Traffic engineering mechanisms which can police the traffic to mitigate the

network or parts of the network fail because of the network bottleneck link (too heavy

loaded link). The traffic should be spread across the network to prevent congestions on

individual links. When connections break down or fail, it is congested in the network

link, it is important to undertake to seek out new paths to the destination. Re-routing is

an important ability that the network must perform in a prompt manner. Another

interesting component of routing is to enforce randomness to avoid predictable flowing

paths, which could be advantageous in a security perspective. The controller is

programmed to find alternative ways by obtaining topology information, once the

network congestion happens, as well as use random generation algorithms to choose

paths when incoming flows arrive at the network. The controller can maintain the paths

which were previously chosen.

 (req_bw, QoS

demand type)

Policy list
Forwarding

Decision Process

Append the

enforce policy to

flow information

73

6.2 Ryu Controller

In the SDN environment, it is essential to select the controller to conduct the

proposed application. The common open-source SDN controllers were already

introduced in Chapter 4. In this section, an SDN controller, Ryu [96] will be discussed

through that operations flow. The logo of the Ryu controller is dragon and Ryū in

Japanese stands for a dragon. Ryu is usually mentioned as component-based, open-

source software-defined by a networking framework. It is supported by NTT’s labs and

executed entirely in Python. Figure 6.2 below depicts the Ryu framework and its main

components [96].

Figure 6.2 Ryu Framework

In the framework, Ryu provides software components with well-defined APIs.

By using these APIs, the network developers can make new network management and

control applications. Additionally, Ryu supports multiple southbound protocols for

managing devices, like Network Configuration Protocol (NETCONF), OpenFlow,

OpenFlow Management and Configuration Protocol (OF-Config), and others. The vital

components of the architecture are explained in the sub-session bellow.

74

6.2.1 Ryu Libraries

Ryu supports several libraries and multiple southbound protocols. Relating to

southbound protocols, Ryu also supports Open vSwitch Database Management Protocol

(OVSDB), OF-Config, NETCONF, Sflow [99], Netflow [105], and other third-party

protocols. Sflow and Netflow protocols can be used for network traffic measurement by

using various methods such as packet sampling and aggregation. The third-party

libraries embody Open vSwitch Python binding, the Oslo configuration library and a

Python library for the NETCONF client. With the help of Ryu’s packet library, the

network developer can analyze and build several protocol packets, like VLAN, MPLS,

etc.

6.2.2 OpenFlow Protocol and Controller

The Ryu framework includes an internal controller and the OF protocol which is

one of the supported southbound protocols. Ryu supports the OpenFlow protocol

starting from version 1.0 to the latest version 1.4. Table 6.4 summarizes the OpenFlow

protocol messages and corresponding API of the Ryu controller.

Table 6.4 OpenFlow Protocol Messages and Corresponding API of Ryu

In the Ryu architecture, the OpenFlow controller is one of the internal event

sources and which can manage the switches and events. In addition, Ryu includes an

OpenFlow protocol encoder and decoder library.

75

6.2.3 Managers and Core-processes

The main executable component in the Ryu architecture is the Ryu manager. In

the run time, the Ryu manager creates a listener that can connect to the OpenFlow

switches. Once it is run, it listens to the specified IP address and the specified port (6633

by default). Then, any OpenFlow switch can connect to the Ryu manager. The App-

manager is one of the main components for all Ryu applications since they need to

inherit functionality from the App-manager’s RyuApp class. The core-process

component in the architecture includes messaging, event management, in-memory state

management, etc. In the architecture, the northbound Application Programming

Interface (API) is illustrated in the uppermost layer, where supported plug-ins can

communicate with Ryu’s OF operations.

6.2.4 RYU Northbound API

At the API layer, Ryu generously supports a REST interface to its OpenFlow

operations. Ryu also includes an Openstack Neutron plug-in that supports both typical

VLAN and GRE-based overlay configurations. In a worthy addition, the researcher can

easily create REST APIs by using a framework for connecting web servers and

applications in Python called WSGI.

6.2.5 RYU Applications

Ryu application is one of the essential elements since the control logic and

behavior is defined in it. Multiple applications are already included in the Ryu

framework such as topology, simple_switch, firewall, router, etc. Although Ryu

applications are implemented and provided various functionalities, they work as the

single-threaded entities. Formerly, Ryu applications send asynchronous events to each

other.

Each Ryu application ordinarily has its own receive queue for possible events,

that is especially FIFO to properly preserve the executive order of events. Furthermore,

each application typically includes a thread for properly processing events from the

queue. The thread’s main loop pops out events from the receive queue and calls the

suitable event handler. Therefore, the event handler is naturally called within the context

of the event-processing thread, that works in a blocking fashion, i.e., once an event

76

handler is given management, no additional events for the Ryu application are going to

be processed till management is returned. The functional architecture of a Ryu

application is introduced in Figure 6.3.

Figure 6.3 Functional Architecture of Ryu Application

6.3 Mininet Network Emulator

To emulate an entire network infrastructure in the SDN environment, Mininet

[87] network emulator is used. It is the main tool for Software-Defined Networking

testbed environments to design, undergo and verify OpenFlow projects. Mininet

provides a high level of flexibility since topologies and new functionalities are

programmed using python language. It also provides a scalable prototyping

environment, able to manage up to 4000 switches on a regular computer. This is possible

due to an OS-level virtualization feature, as well as including processes and network

namespaces, that permits to produce completely different and separate instances of

network interfaces and routing tables that typically operate the independents of every

different.

Mininet mainly allows the hosts, switches, and controllers and it creates a huge

network simulation in a single PC. It creates the virtual open flow network which

includes SDN controller, OpenFlow software switches, multiple hosts and links in a real

or virtual machine. The Mininet tool will work in the different operating systems such

as Mac OS, Windows, and Linux. Mostly for the Research part, Linux is preferable.

77

Using Mininet can create the small data center consists of hosts and open flow switches.

By implementing this experiment, the output can be achieved.

6.3.1 Topology Elements

There are four topology elements that Mininet can create:

 Link: emulates a wired connection between two virtual interfaces which act as

a fully functional Ethernet port. Packets are delivered through one interface to

another. It is possible to configure Traffic Control for the links importing the

TCLink library via the Python API.

 Host: emulates a Linux computer which is simply a shell process moved into its

own namespace, from where commands can be called. Each host has its own

virtual Ethernet interface.

 Switch: software OpenFlow switches typically provide the identical packet

delivery semantics that will be provided by a hardware switch.

 Controller: Mininet allows to create controller within the same emulation or to

connect the emulated network to an external controller running anywhere there

is IP connectivity with the machine where Mininet is running.

6.3.2 Command Used to Create Topology in Mininet

To execute Mininet passing a file containing a particular topology, the command

mn has to be accompanied to the parameter --topo mytopo and the parameter --custom

mytopo, and the name of the file is simple_topo.py.

The command used to launch a custom network topology is this:

The option --mac is used to set automatically the host MACs addresses. With --custom

we indicate the path in which is present the file from which you will take the topology,

in this case mytopo.py, followed by the command --topo mytopo which is the specified

name given to the topo variable inside the file simple_topo.py.

78

6.4 Traffic Generator and Measurement Tools

For this academic research, accuracy in the measurement is not a necessary

objective. However, it should be precise enough to sufficiently reveal general behavior

and distinct tendencies of the network traffic. Subsequently, the following tools were

properly selected for the objective measurement of the achieved bandwidth and analysis

of traffic under different QoS settings: iPerf [82], Wireshark [98], and DITG [7].

6.4.1 Iperf

Iperf is a very useful performance measurement tool for measuring the maximum

bandwidth available between two nodes. It is utilized in TCP (Transport Control

Protocol) and UDP (User Datagram Protocol) connections, through the modulation of

various parameters. Mainly Iperf is used for the bandwidth and datagram loss. It mainly

uses to calculate the network flow between the two nodes. It must be installed on both

nodes, then it must be started as a server on one node, and as a client on the other one.

The transmission procedure will take only a few seconds and then you will see the

bandwidth.

The following work can be done by using Iperf:

 measure bandwidth

 in a client-server network, the client generates a UDP flux, with

 a specific bandwidth (BW)

 measure packet loss

 measure jitter

 work in a multicast environment.

6.4.2 Wireshark

Wireshark in common is a common network packet analyzer which can be

popularly used on the controller or Mininet host to properly look at OpenFlow exchange

message between the controller and individual switches. It adequately captures a packet

within the network to instantly show its TCP/IP layer information as detailed as possible,

letting to look at its explicit content for purposes like network troubleshooting, security

examinations, protocol debugging and network protocol learning.

79

This tool permits to properly capture live packets from a network interface

(physical or virtual), displaying correctly the packet information with elaborate protocol

information, and saving all packet captures for additional studies and reliable statistics.

The captured information can be analyzed under different criteria, in which the

necessary information can be altered by timestamps, TCP/UDP ports, protocols, TCP

sessions, and more.

Since Wireshark remain an effective tool that works at user-space, it uses the

pcap library to permit Wireshark to capture packets at a lower level. This typically

allows the capture of packets with a more precise timestamp since there is no additional

delay caused by the internal communication process between the user-space and kernel-

space levels. This research has used the Wireshark dissector provided by a Mininet

package, that enables the OpenFlow filter to typically capture OpenFlow messages and

carefully observe their message format in detail, as well as flow entries and group

entries.

6.4.3 Distributed Internet Traffic Generator (DITG)

One important component of the experiment framework is the traffic generator

which is used to generate network traffic flows in the emulated network. In the network

experiments, single flow traces collected in real networks should be replayed as they

occurred in the real network which means that the packet timing and packet sizes should

replicate the real scenario as exactly as possible.

There are several traffic generators that support such a trace-based traffic

generation like TCPreplay [100] or TCPopera [33]. However, because of the possibility

to schedule multiple flows and the more comprehensive and convenient way of altering

properties of single flows, the distributed internet traffic generator (D-ITG) was selected

to be integrated into the experiment framework. Furthermore, D-ITG offers more

advanced features for calculating and logging network metrics and provides also an

analytical model-based traffic generation mode. In this mode, D-ITG is capable of

producing realistic network workloads that replicate stochastic processes [7]. During the

experiments, this functionality was not utilized but might be useful in some other

scenarios which are the reason why the experiment framework becomes more flexible

by integrating the D-ITG traffic generator rather than a trace-based only generator.

80

6.5 The Test-bed Implementation with Mininet

The SDN controller, Ryu framework is designed to run on the host computer

with a TCP connection to the emulated Mininet network topology. The detailed software

versions are shown in Table 6.5.

Table 6.5 Testbed Requirements

No Name Specification

1 Operating System Ubuntu 16.04 LTS (64 bits)

2 Ryu controller [Ryu] Version 4.30

3 Mininet Emulator [Mininet] Version 2.2.1

4 OpenFlow Protocol [OpenFlow] Version 1.3

The test-bed implementation is structured as illustrated in Figure 6.3

Figure 6.4 Simple Network Topology

Firstly, run a simple network topology as shown in Figure 6.4, composed by

three clients, h1, h2, and h6 and four servers h3, h4, h5, h7. There are three paths to

communicate from the clients to the servers. Hence, path (s1, s3) is the direct

communication link and it is the minimum hop count path (shortest path) leaving the

other two equal-cost paths (s1, s2, s3) and (s1, s4, s3) as the second shortest. The Mininet

script file is shown in the script file below.

81

simple_topo.py

!/usr/bin/env python

from mininet.net import Mininet, CLI

from mininet.node import RemoteController, OVSKernelSwitch, UserSwitch, Host

from mininet.link import TCLink,Link

from mininet.term import makeTerms, makeTerm, runX11

import argparse

import subprocess

net = Mininet(controller=RemoteController, switch=OVSKernelSwitch, link=TCLink)

h1 = net.addHost ('h1', mac = '00:00:00:00:00:01', ip = '10.0.0.10')

h2 = net.addHost ('h2', mac = '00:00:00:00:00:02', ip = '10.0.0.20')

h3 = net.addHost ('h3', mac = '00:00:00:00:00:03', ip = '10.0.0.30')

h4 = net.addHost ('h4', mac = '00:00:00:00:00:04', ip = '10.0.0.40')

h5 = net.addHost ('h5', mac = '00:00:00:00:00:05', ip = '10.0.0.50')

h6 = net.addHost ('h6', mac = '00:00:00:00:00:06', ip = '10.0.0.60')

h7 = net.addHost ('h7', mac = '00:00:00:00:00:07', ip = '10.0.0.70')

s1 = net.addSwitch ('s1', cls = OVSKernelSwitch, protocols = 'OpenFlow13')

s2 = net.addSwitch ('s2', cls = OVSKernelSwitch, protocols = 'OpenFlow13')

s3 = net.addSwitch ('s3', cls = OVSKernelSwitch, protocols = 'OpenFlow13')

s4 = net.addSwitch ('s4', cls = OVSKernelSwitch, protocols = 'OpenFlow13')

net.addLink(s1, s2, port1=1, port2=1)

net.addLink(s2, s3, port1=2, port2=2)

net.addLink(s1, s4, port1=2, port2=1)

net.addLink(s3, s4, port1=3, port2=2)

net.addLink(s1, s3, port1=3, port2=1)

net.addLink(s3, h6)

net.addLink(s3, h4)

net.addLink(s3, h5)

net.addLink(s3, h7)

net.addLink(h1, s1)

net.addLink(h2, s1)

net.addLink(h3, s1)

net.addController('c0')

net.start()

CLI(net)

net.stop()

82

The topology in mininet is created with this command:

root@ntz: sudo python simple_topo.py

After this command is launched, the CLI devolves the output shown in Figure 6.5.

Figure 6.5 Network Topology Created

The Ping command is used to verify connectivity among devices. In Mininet it

is possible to use the pingall command, that does an all-pairs ping. This command

verifies that the created links function. The figure below shows that when running the

first time the pingall command, the first host does not have connectivity with other hosts,

while all the other links are good.

Figure 6.6 Pingall Command Executed

83

6.6 QoS Measurement Parameters

The proposed QT approach is compared with three methods: (i) conventional

shortest path routing, (ii) multipath routing and (iii) Hedera in fat tree topology in terms

of performance. The performance of the proposed QT approach is measured by QoS

parameters such as:

1. Throughput: It is the rate of successful message delivery over a network.

Throughput is measured in Bps (bytes per second) or bps (bits per second). If more

data transferred, higher throughput result.

2. Delay: It’s the amount of time it takes to send information from one point to the

next. Delay is usually measured in milliseconds or ms. The ITU-T recommends that

in general network planning, a maximum of 400 ms for the one-way delay should

not be exceeded. However, they note that many interactive applications (e.g, voice

calls, video conferencing, interactive data applications) are affected by a much lower

delay. The experiences of most applications are generally considered acceptable if

the delay is kept below 150 ms. As the traffic latency increases, the impact on

applications’ experiences becomes noticeable. When the delay exceeds 400 ms, most

applications will encounter unsatisfactory performance. Several factors affect the

end-to-end delay of transmitted data packets. They include processing delay,

queueing delay, transmission delay, and propagation delay. It impacts the user

experience and can change based on several factors. For simplicity, only

transmission delay will consider in the experiment and assume the other type of

delays is negligible.

3. Jitter: It is based on the delay - specifically, delay variations. Jitter is the

difference between the delay of two packets. It often results in packet loss and

network congestion.

4. Packet Loss: It occurs when one or more packets of data traveling across the

network fail to reach their destination. One of the major causes of packet loss is link

congestion. It is either caused by errors in data transmission.

Results are expected to be better for the QT approach in terms of throughput and

packet loss because in this approach the end-to-end bandwidth resource allocation is

presented to provide better QoS performance for different types of traffic. Moreover,

84

the QT approach can be reduced the amount of delay for the minimum delay demand

flow due to its delay estimation module which is used in the QoS routing module.

6.7 Chapter Summary

In this approach, it is assumed that network users register their preferences of

QoS demands to the controller in order to allocate an appropriate route for each traffic.

The controller maintains the registered information and finds the most feasible path for

each QoS demand. The minimum delay demand flow has the highest priority flow; the

bandwidth demand flow has the medium priority flow and leaving the default flow as

the lowest priority flow. For the bandwidth demand flow, the controller finds the

maximum bandwidth path to improve the performance of the flow throughput. For the

delay demand flow, the controller chooses the minimum delay paths.

This chapter presents the QoS classes and the related policies that will apply in

the proposed system. By using these technologies and features, the proposed system will

demonstrate and test the performance of the proposed approach in the next chapter.

85

CHAPTER 7

EXPERIMENTAL RESULTS AND ANALYSIS

This chapter investigates the performance of the proposed approach (QT) and

tests the validity of the proposed resource allocation scheme. This chapter shows and

explains the results obtained with the scenario proposed in the previous chapter. The

analysis consists of end-to-end measurements of throughput, latency, jitter, and losses

for UDP and TCP connections with different traffic patterns. The first point with

analysis of the default behavior of the OpenFlow’s supportive QoS features are also

included. All the measurements have been done by generating the network traffics with

the use of DITG. In order to evaluate the performance of the proposed approach (QT),

the experimental testbed has to be designed. As the proposed system is implemented

using the Ryu controller, it runs different topologies in order to compare and evaluate

the results with or without the proposed method. In order to have deterministic and low-

cost environments to test, a virtual testbed was created on a PC with Intel Core i7-6500U

processor, 8 GB of RAM, and 1TB of hard disk space running Ubuntu 16.04 LTS

operating system. The Python implementation of the experiment used Python version

2.7.

7.1 Preliminary Experiments with User-space Switches (CPqD)

This section serves as an initial exploration of the bandwidth guaranteeing

system with the OpenFlow protocol. Currently, OpenFlow is supported for QoS in the

SDN environment by two options, specifically the queue and meter. A queue is an egress

packet queuing mechanism in the OpenFlow switch port. Although OpenFlow supports

the queue features, it does not handle queue management; it is just able to query queue

statistics from the switch. Therefore, the queuing feature of OpenFlow is a property of

a switch port. Meters have been introduced in OpenFlow protocol in version 1.3 to

measure and control the ingress rate of packets in switches. OpenFlow metering enables

the ingress rate monitoring of flow and performs operations based on the rate of the

flow. Unlike a queue, a meter is attached to flow entries. A meter has a component called

meter band which specifies the rate at which the meter is applied. A meter can have one

or more meter bands but only a single band is applied for each flow at a time based on

86

the rate of packets. A flow which is mapped to a meter directs packets to the meter which

measures the rate of the packets and activates appropriate meter band if the measured

rate of packet goes beyond the rate defined in the meter band. This experiment focuses

on the studying of providing bandwidth guarantee with OpenFlow supportive QoS

features, queue and meter.

7.1.1 Experimental Setup

All network topologies are emulated on an Ubuntu 16.4LTS virtual machine.

The emulation is conducted using a network topology including one controller, four

switches, and four hosts as shown in Figure 7.1. Mininet is used for the network

emulation in all the experiments. Mininet is a network emulator that can run multiple

end-hosts on a single Linux kernel. Various network topologies with different switches,

routers, and links can be created. Once a topology is set up, each element of it runs on

the same kernel. Links can be set up at arbitrary bandwidth, network delay and packet

loss. Furthermore, each host in Mininet behaves just like a real machine. “Ryu”

controller is used to control the topology which is supported by the emulator. All the

switches are User-space switches (CPqD) for the purpose of testing since OpenvSwitch

(v2.8) does not fully support meter features with DSCP_remark. Only the CPqD switch

can support the ‘dscp_remark’ meter band setup.

Figure 7.1 Test-bed Environment

87

A network topology has been developed via a script in Mininet. After running

the topology script, the controller takes action to load topology information using Ryu’s

library and set QoS configuration to a link between switches. Then, we apply the

configuration of Iperf client and server to each virtual host to verify the throughput of

the network. For all the tests, the proposed system used the same topology in order to

have the basis for comparison.

7.1.2 Evaluation Results

This section investigates the use of OpenFlow’s meter function in QoS control

with different scenarios and measures the performance of the network. Iperf utility is

used to generate traffic in all of our experiments. Iperf is a generally-used network

testing tool that can create Transmission Control Protocol (TCP) and User Datagram

Protocol (UDP) data streams and measure the throughput of a network that is carrying

them. Iperf allows the user to set various parameters to test the performance of the

network. For example, the user can measure the throughput between the two ends since

Iperf has a client and server functionality. Instead of TCP traffic flow, UDP traffic flows

are adopted, which provide the most efficient means of congesting the bottleneck link.

7.1.2.1 Scenario 1: Without QoS Setting

In the first scenario, testing starts all the flows at the same time in the best effort

fashion with bandwidth limitation. Traffic flow is set as shown in Table 7.1.

Table 7.1 Network Experiment Flows for Scenario 1

Flow ID Flow Type Source- Destination Destination Port Protocol Traffic (kbps)

Flow 1 BE H2 - H1 5001 UDP 800

Flow 2 BE H3 - H1 5002 UDP 400

Flow 3 BE H4 - H1 5003 UDP 600

A flow may congest the network with other flows if all traffic is handled in a

best-effort fashion and it is possible to see that all traffic competes for the total

bandwidth. Flow congestion will increase whenever a new flow arrives. According to

the common best-effort manner, packets are simply dropped if congestion happens.

88

Figure 7.2 shows that there is no bandwidth guarantee for all the flows without QoS

implementation.

Figure 7.2 Flow Bandwidth Distribution Between All Data Flows

7.1.2.2 Scenario 2: With QoS Setting

The second scenario is to run the same topology as scenario 1 by adding queue

and meter functions to reserve network bandwidth for QoS flows. In order to abstract

simulations, the queue was created with predefined bandwidth allocation in S1 and

configure the static meter setting in other switches. In S1, every port has three different

level queues and different QoS parameters (minimum bandwidth) are configured for

those queues. All the incoming packets to S1 are assigned to one of these queues before

forwarding to the destination. Table 7.2 shows the bandwidth allocation with the queue

setting.

Table 7.2 Queue Configurations for Experiment

This scenario classifies the traffic flows into two types: QoS-flow and best-effort

flow. QoS is implemented using DiffServ and uses different differentiated services code

point (DSCP) numbers to classify network traffic for quality of service (QoS) levels.

DSCP = 0 is used for the best-effort flow in this experiment. DSCP = 10 (AF11) and

DSCP = 12 (AF12) are used for QoS-flow 1 and QoS-flow 2 respectively. Each DSCP

0

200

400

600

800

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Th
ro

u
gh

p
u

t (
kb

p
s)

Flow Duration (sec)

Flow_1 Flow_2 Flow_3

Queue ID Minimum Rates (kbps) QoS ID DSCP value

0 80 1 0

1 120 2 10

2 800 3 12

89

value is matched with a meter instruction in the meter table and looks up the

corresponding queue on the switch’s flow table. Then, packets are sent out to the

neighbor switches from their corresponding output ports and queue based on the DSCP

number in the packet header. Bandwidth guaranteed for AF11 class traffic is set (QoS-

flow 1) with 400 kbps. Table 7.3 shows the meter band, and Table 7.4 shows flow entry

information with meter and queue.

Table 7.3 Meter Band Setting

Meter ID Flags Bands

1 kpbs type:dscp_remark, rate:400 kbps

Table 7.4 Flow Entry Information with Meter

QoS ID Meter ID Source- Destination Destination Port Protocol Traffic (kbps)

1 - H2 - H1 5001 UDP 800

2 1 H3 - H1 5002 UDP 400

3 - H4 - H1 5003 UDP 600

A comparison of throughput fluctuations is made between the best-effort data flow and

QoS-flow. Figure 7.3 shows the time-varying throughput for the best-effort flow and

QoS-flow 1. If AF11 class traffic exceeds 400 kbps, re-marked the traffic as AF12 class

and treated as excess traffic. Figure 7.4 shows the flow bandwidth distribution between

the best-effort flow and QoS-flow 2 (AF12), and according to these results, AF12 is

more preferentially guaranteed bandwidth than the traffic of the best effort.

Figure 7.3 Flow Bandwidth Distribution Between Best-effort Flow and QoS-flow 1

(AF11)

0

200

400

600

800

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Th
ro

u
gh

p
u

t (
kb

p
s)

Flow Duration (sec)

Best-effort flow QoS-flow 1 (AF11)

90

Figure 7.4 Flow Bandwidth Distribution Between Best-effort Flow and QoS-flow 2

(AF12)

Figure 7.5 Flow Bandwidth Distribution Between QoS-flow 2 (AF12) and QoS-flow 2

(AF12)

Figure 7.6 Flow Bandwidth Distribution Between QoS-flows and Best-effort Flow

0

200

400

600

800

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Th
ro

u
gh

p
u

t (
kb

p
s)

Flow Duration (sec)

Best-effort flow QoS-flow 2 (AF12)

0

200

400

600

800

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15Th
ro

u
gh

p
u

t (
kb

p
s)

Flow Duration (sec)

QoS-flow 1 QoS-flow 2

0

200

400

600

800

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T
h

ro
u

gh
p

u
t

(k
b

p
s)

Flow Duration (sec)

QoS-flow 1 (AF11) QoS-flow 2 (AF12) Best-effort flow

91

Figure 7.5 shows that when the two QoS-flow 2 (AF12) is faced with network

congestion both of them drop at the same rate. According to the results in Figure 7.6,

meter bands are limiting bandwidth per-flow and the queue provides bandwidth

guarantees for each specific application as expected. For this round, best-effort network

traffic is generated with 400 kbps instead of using 800 kbps like all the above

experiments. For the sake of demonstration, the network congestion rate has been

reduced slightly because the test-bed’s link capacity is set to 1 Mbps.

According to the QoS configuration setting, best-effort flows are passed through

q1 and QoS-flow 1 with DSCP=10 will be passed through to q3. Lastly, QoS-flow 2

(remark packets/flows) is passed through to q2. Figure 7.7 describes the statistical

information of all the queues related to port 1 in S1, and Figure 7.8 notifies the statistics

of meter used in the experiment.

Figure 7.7 Statistical Information of Queues in S1

Figure 7.8 Statistic of Meter in S3

92

A well-designed QoS system should give access to the right amount of network

resources needed by the various data flows using the network. In this experiment,

implementation and verification of QoS control in SDN with the help of OpenFlow’s

QoS functionality were presented. Also, the researcher has demonstrated how to provide

bandwidth guarantees with OpenFlow’s meter function by carrying out experiments.

The results of the experiments confirmed that the meter function of OpenFlow can

provide bandwidth guarantee effectively in high QoS network and we can adapt the

DSCP values for traffic classification to make QoS control easier.

However, the QT program is configured with OVS. Since OVS does not support

the full capability of the OpenFlow meter function, DSCP remark, it works just like a

traffic shaper at the ingress port. Therefore, the use of the OpenFlow meter function is

left as future research. In the later experiment, the queue mechanism will just be used to

provide a bandwidth guarantee.

7.2 Preliminary Experiments with Open Vswitch (OVS)

Before the evaluation of the proposed approach (QT), this section exploits a

bandwidth guaranteeing system with OpenFlow protocol in the SDN network with

OpenVswitch. Since the bandwidth is the key component for offering QoS, the focus is

only on bandwidth guarantees in this experiment. Since the OVS cannot fully support

the metering feature, it will only explore the egress queues defined in the OF1.3

specifications. This experiment implements and verifies QoS control with OpenFlow’s

queuing techniques HTB over SDN. It describes the results of the experiments in the

SDN emulation network environment.

In this study, HTB queuing is used to provide the bandwidth guarantee for the

QoS flows. The HTB qdisc allows arranging traffic classes in a multi-layered

hierarchical tree. In the proposed approach, two layers hierarchical tree is used where

the root node (in the first layer) represents the parent class for all kinds of traffic. The

root node is configured as soon as a switch connects to the controller. The maximum

rate and minimum rate for the root class are both equal to the link speed. Typically, the

maximum rate for the class is equal to the root (link speed) unless obviously stated

otherwise in the request.

93

7.2.1 Experimental Design

The network topology is implemented by using python script in the Mininet

emulator. Figure 7.9 shows the simulated network topology for the experiment. The

implementation of the queue mechanism is demonstrated with simple linear network

topology which consists of two switches and four hosts. The Open Virtual Switches

(OVS) are used in the network topology. All the network links between OVS switches

have been set to 100 Mbps, and the capacity of the output ports in all the OVS switches

are also100 Mbps. Hosts h1,h2, and h3 are traffic senders via OVS switch S1 and h4 is

the traffic receivers via OVS switch S2. OVS switches S2 and S4 are the intermediate

switches in the prototype.

Figure 7.9 Linear Network Topology

In the first scenario, testing starts all the flows at the same time in the best effort

fashion with bandwidth limitation. Traffic flow is set as shown in Table 7.5. In order to

abstract simulations, the queue are created with predefined bandwidth allocation in S1.

In S1, every port has three different level queues and different QoS parameters

(minimum bandwidth) are configured for those queues. All the incoming packets to S1

are assigned to one of these queues before forwarding to the destination. Table 7.6 shows

the bandwidth allocation with queue setting.

Table 7.5 Network Experiment Flows Information

Flow ID Source- Destination Destination Port Protocol Traffic (Mbps)

Flow 1 H2 - H1 1111 UDP 100

Flow 2 H3 - H1 2222 UDP 100

Flow 3 H4 - H1 3333 UDP 100

94

Table 7.6 Queue Configurations Setting

7.2.2 Evaluation Results

Figure 7.10 shows the created network topology information in mininet.

Figure 7.10 Created Network Topology

Figure 7.11 shows the throughput results according to the predefined bandwidth

allocation for all flows.

Figure 7.11 Throughput Testing with Iperf Utility

In the beginning, the H1 is sending to H4. The throughput is around 58 Mbps

since the flow H1-H4 enqueued to q2 which has 60 Mbps as the maximum queue size.

After 10 seconds later, we generate H2 flow for 10 seconds. When H2 starts to send

traffic to H4, the throughput of flow H1-H4 drops immediately to 600 Kbps as shown

in Figure 7.12. This is because the flow H2-H4 enqueued to q1 which gave 20 Mbps as

the minimum bandwidth upmost to the link capacity as the maximum bandwidth.

Therefore, the throughput of the H2-H4 is around 96.6 Mbps. After 10 seconds later, H2

Queue ID Max-Min Rates (Mbps) QoS ID DSCP value

0 10 (Max) 1 0

1 30 (Min) 2 10

2 60 (Max) 3 12

95

flow is finished and then start H3 to H4. The throughput of H1-H4 will not be affected

by H3-H4.

Figure 7.12 Iperf Throughput Results Shown in the Server Site H4

From these two experiments, the OpenFlow-Queueing mechanism improves

QoS by providing a bandwidth guarantee for the high priority traffic is confirmed. But

Specification of OpenFlow is not finished to fully support QoS implementation in the

current state. For example, OpenFlow Queues are not a mandatory part of the

specification and managing OpenFlow Queues is not handled by OpenFlow Protocol.

As a future work, investigating and evaluating further QoS mechanisms in SDN by using

queue statistic and OpenFlow meter is still is needed. Moreover, the numbers and

priority of the Queues are vendors dependent on the current network. Therefore, for the

proposed approach (QT), (1:3:6) ratio of the link bandwidth will be set as a reasonable

amount of bandwidth for the testing purposed in the below experiments.

7.3 Experimental Design for the Proposed Approach (QT)

This section exploits the prototype implementation and demonstration of the

proposed resource allocation scheme in the different network topology. In the test

environment, the SDN controller obtains the global network information and status by

96

periodically monitoring the network condition. The controller estimates the link

bandwidth utilization and identifies whether the links are bottlenecks or not. If a

bottleneck link is detected, the controller chooses one or more highest priority flows to

reroute to the alternative path. The data traffic is divided into three QoS classes. One is

the traffic that does not have QoS requirements (called best-effort flows) and the other

two are the traffic that has one or more QoS requirements such as bandwidth, delay,

jitter or packet loss ratio (called critical flows or QoS flows). An emulated OpenFlow

environment is configured and used to validate the proposed solution by using a Mininet

emulator. The Ryu controller is used as an SDN remote controller in the control plane

of the OVS for the proposed system.

In order to allocate an appropriate route for each traffic, it is assumed that

network users register their preferences of QoS demands to the controller. The possible

options for preferences QoS demands are bandwidth, delay, and default (best-effort).

The controller maintains the registered information and finds the most feasible path for

each QoS demand. In the experiment, the delay demand flow has the highest priority

flow; the bandwidth demand flow has the medium priority flow and leaving the default

flow as the lowest priority flow. For the bandwidth demand flow, the controller finds

the maximum bandwidth path to improve the performance of the flow throughput. In

order to minimize the flow delay, the controller estimate and choose the minimum delay

paths for the minimum delay demand flow if the link bandwidth is enough for it.

To limit the maximum, minimum traffic rates for different flows, three different

queues are set with different rates for all the interfaces of the switches. Queue

configuration setting with specific flow type which is used throughout the whole

experiments is shown in Table 7.7.

Table 7.7 Queue Configurations for Experiment

QoS Class QoS priority Queue Max-rate Min-rate

Delay High q1 - 3Mbps

Bandwidth Medium q2 6 Mbps -

BE Low q0 1 Mbps -

97

Queue configuration setting and queue mapping with specific flow types are

shown in Table 7.8. The example command to create the queues is shown below.

For all the experiments, that the bandwidth proportion of the three priority

queues is assumed 1:3:6, for simplicity, follow the authors used in [61]. If the flow

request exceeds the available bandwidth which is defined by the queue scheduling

module to serve for this specific type of flow, the service will not be guaranteed. The

flow priority for the bandwidth demand flow is set as a higher priority than minimum

delay demand flow. Since the queue priority of the minimum delay demand flow is the

highest, it will affect all other queues and flows. Therefore, the routing module will set

the highest flow priority to bandwidth demand flow in order to prevent service

degradation too much because of the priority queue. Cross-traffic flow is a simple best-

effort flow and it has the lowest priority. The cross-traffic is generated to change the

congestion level for the demonstration purpose. The routing module will calculate the

new path to reroute the high priority flow when the network is highly congested.

7.3.1 Experiment 1: Simple Network Topology

To test the fundamental work of delay estimation module and QoS routing

approach, a simple network topology is used. An emulated OpenFlow environment is

configured and used to validate the proposed solution by using a Mininet emulator. The

Ryu controller is used as an SDN remote controller in the control plane of the OVS for

the proposed system.

7.3.1.1 Experimental Setup

To check the effectiveness of the proposed approach (QT), an environment is

built as shown in Figure 7.13. The emulation was conducted by using the network

topology including one controller, four switches, and seven hosts as shown in Figure

7.13. Bandwidths of all the links were limited to 100Mbps for testing purposes. In

98

accordance with the topology in Figure 7.13, we have three clients, h1, h2, and h3 with

four servers h4, h5, h6, and h7.

Figure 7.13 Simple Network Topology with Link Delay Parameter

In order to simulate the UDP traffic, the DITG network test tool is customized

and seven flows are generated. To observe the flow performance for the proposed

scheme, two minimum delay demand flows, two bandwidth demand flows and three

best_effort traffic flows are used with various packet sizes and rates. The minimum

bandwidth request ratios for both QoS flows and cross-traffic are shown in Table 7.8.

Table 7.8 Network Experiment Flows for Simple Network Topology

Flow id Source- Destination Packet rate (pps) Packet size (Bps) Time (sec.) Type

1
h1-h4

VoIP - 60 UDP

2
h1-h6

3500 (Video) 1024 60 UDP

3
h2-h5

1000 (Haptic) 128 60 UDP

4
h2-h7

3000 (BE) 1024 60 UDP

5
h3-h6

3000 (Video) 1024 60 UDP

6
h3-h7

2500 (BE) 1024 60 UDP

7 h3-h8 Telnet - 60 TCP

99

The host pair (h1-h4) means the traffic from h1 to h4 and it is denoted as

minimum delay demand flow (VoIP). The host pair (h1-h6) means the traffic from h1

to h6 and it is denoted as bandwidth demand flow. Then the host pair (h2-h5) means the

traffic from h2 to h5 and it denoted as haptic traffic.

To limit the maximum and minimum traffic rates for different flows, we set three

different queues with different rates for all the egress interfaces of s1, s2, and s4. For

this experiment, q0 has with the maximum bandwidth (1 Mbps) for the default demand

flow and q1 has the minimum bandwidth (3 Mbps) for the minimum delay demand flow.

Then, q2 is configured with a large maximum bandwidth (6 Mbps) for the bandwidth

demand flow.

After setting policies in all the intermediate switches, the two flows from client

h1 is sent simultaneously at time zero for 60 seconds. After five seconds later, the other

two flows from h2 is sent for 60 seconds while the lest traffic flows from the h3 is start

at another 5 seconds later for 60 seconds.

According to the prototype network topology, there are three possible traveling

paths between traffic senders and traffic receivers.

First Path: s1 - s3

Second Path: s1 - s2 - s3

Third Path: s1 - s4 - s3

According to the link delay setting, the first flow from client h1 to h4 will select

the second path (s1 - s2 - s3) which has the minimum delay and reserved the user’s

requested bandwidth for it. In the initial stage, there is no other flow is allocated on the

network link, the second flow from client h1 to h5 will select the first path (s1-s3) since

the first path has the shortest length. After 5 seconds, h2 requests for the two different

flows. The first one from client h2 to h5 will select the minimum delay path among these

three possible paths since it is the minimum delay demand flow type. Then, the left flow

from client h2 selected the path with to have maximum available bandwidth for it. After

10 seconds later from the most first generated flow, the client h3 request three types of

traffic flows and paths are chosen for them based on their demand QoS types. The link

will be defined as a bottleneck when the total reserved bandwidth over a link is exceeded

then the predefined threshold (80%) [65]. When the bottleneck link is detected, the

100

highest priority flow will reroute to other best path in order to present bandwidth

starvation and packet loss rate for the bandwidth demand flow.

7.3.1.2 Evaluation Results

The goal of this experiment is to test the fundamental work of the delay

estimation module and the QoS routing module. The performance of the proposed

approach (QT) will measures with all of the QoS parameters as the researcher already

mentions in section 6.6. Then, the comparison of the experimental results is made by

using the proposed scheme with the traditional shortest-path routing scheme and

multipath routing schemes. The throughput and packet loss is measured for all traffic

flows. The average throughput for both QoS flows types and Best-effort flows types are

shown in Figures 7.14 (a), 7.14 (b), respectively.

(a) Average Throughput of the QoS flows (b) Average Throughput of BE flows

Figure 7.14 The Average Throughput of the Experiment on Simple Network Topology

According to Figure 7.14, the traditional single path scheme has minimum

throughput performance than the other two schemes. This is the consequence of using

always the same shortest path (s1, s3) for routing. In Figure 7.14(a), it can be seen that

the throughput of network flows in both multipath and the proposed approach (QT) have

a high throughput rate than single path routing. This is because all the flows were routed

to all the available paths instead of sharing a single path to route flows from the sources

to the destinations in both approaches.

101

(a) Packet Loss Rate of the QoS flows (b) Packet Loss Rate of BE flows

Figure 7.15 Packet Loss Rate of the Experiment on Simple Network Topology

The packet loss rate of the three approaches for each flow is shown in Figures 7.15.

According to the experiment results, the proposed approach (QT) has a zero or nearly

zero packet loss rate for all traffic. Figure 7.15, the packet loss rate is high in a traditional

single-path routing scheme. It is observed that the packet loss rate of our proposed

scheme is less than those of the other two schemes. Although multipath have some

packet loss rate of approximately 1 % in each flow, it can be acceptable and neglectable.

(a) Average Delay of the QoS flows (b) Average Delay of BE flows

Figure 7.16 Delay of the Experiment on Simple Network Topology

From Figure 7.16, it can be seen that the delay performance of the proposed

approach (QT) for all the flows is less than both single path and multipath routing

schemes. From the experiment results, it is observed that the proposed approach (QT)

works well and provides better performance in terms of packet loss rate for the QoS

102

traffics. Later, the performance of the QoS routing with large network topology will

evaluate.

This experiment focused on the fundamental work of the proposed approach

(QT) in simple network topology by using the queuing technique. The goal is to improve

the link utilization while reducing the packets loss rate as the QoS factor in the overall

network. To realize this goal, the proposed approach (QT) tries to allocate the network

traffic dynamically by using the available bandwidth which is provided from the

network monitoring module. The results of the experiments showed that the proposed

approach (QT) achieves better performance in terms of throughput, end-to-end delay

and packet loss rate than that of traditional shortest-path and multipath routing.

7.3.2 Experiment 2: Abilene Network Topology

For testing the QoS routing module, Mininet is used to create the network

topology. Open vSwitch is chosen due to its flexibility and good support for OpenFlow

switch specifications. The topology was set up based on Abilene core topology in

Mininet OpenFlow network with 1 controller and 11 switches as shown in Figure 7.17.

DITG was used as a testing tool to generate UDP data streams in their simulation.

7.3.2.1 Experimental setup

To test the proposed QoS routing module, a network topology with 11 switches

(Open vSwitch) and 8 hosts is created in Mininet. The topology is shown in Figure 7.17.

The bandwidth of the links between all switches is set to 100 Mbps.

Figure 7.17 Abilene Network Topology

103

After that, 9 flows are generated using DITG. Five of these flows were critical

flows which include three minimum delay demand flows and two bandwidth flows.

Table 7.9 shows the list of flows in this experiment. Using Python script, we started the

Mininet topology and then generated the flows in the order shown in the below table.

 Table 7.9 Network Experiment Flows for Abilene Network Topology

Flow id
Source-

Destination
Type of Demand

Packet rate

(pps)

Packet size

(Bps)

Time

(sec.)
Type

1 h1-h4 Min-delay VoIP - 60 UDP

2 h1-h6 Bandwidth demand 3500 1024 60 UDP

3 h1-h8 BE 1000 1024 60 UDP

4 h2-h5 Min-delay 1000 128 60 UDP

5 h2-h6 Bandwidth demand 1000 1024 60 UDP

6 h2-h7 BE 3000 1024 60 UDP

7 h3-h4 Min-delay VoIP - 60 UDP

8 h3-h7 BE 3000 1024 60 UDP

9 h3-h8 BE 1000 1024 60 UDP

At the beginning of the experiment, multiple (eight) flows were generated for 60

seconds. Firstly, three types of different traffic flow from client h1 to different servers

were generated and followed three other types of flows from client h2. Lastly, three

flows from client h6 were generated. The average results were calculated based on 5

running times.

Firstly, the network controller needs to choose the monitoring time interval

before starting the experiment. The proposed system needs to regularly query the

switches to retrieve flow statistics using the equations described in section 5.2.1. Hence,

the proposed system used the fixed polling method which may poll all the active flows

after the fixed timeout expires. The available bandwidth is calculated by the network

controller when the monitoring module receives the number of bytes sent and the

104

duration of each flow. However, frequently updating the flow information may increase

the monitoring overhead.

To examine the network polling interval, the network delay is extrapolated in

this experiment. According to Figure 7.18, extrapolation gives fewer network delay

results in 3 seconds for all traffic. But accuracy may largely depend based on how

frequently the controller is polling the switches to get the network statistics and how

dynamically the network traffic is changing.

Figure 7.18 The Delay-based Extrapolation

7.3.2.2 Evaluation results

The performance of the proposed scheme was analyzed in terms of throughput

and packet loss rate. A comparison between the proposed scheme, the traditional single-

path routing scheme, and the flow-based multipath routing scheme was made. The

proposed scheme installed the priority flow rule reactively according to user demand.

The throughput of the experiment is shown in Figure 7.19.

105

(a) Throughput of Minimum delay demand flows (b) Throughput of Bandwidth demand flows

(c) Throughput of BE flows

Figure 7.19 The Average Throughput of the Experiment on Abilene Network Topology

According to the experiment results, as shown in Figure 7.19, the traditional

single path scheme has worse throughput performance than the other two schemes in

almost every flow. This is the consequence of using always the same shortest path for

routing due to its sharing one single path. The throughput of the minimum delay demand

flows is shown in Figure 7.19(a). Compared with Figure 7.19(b) and 7.19(c), the amount

of throughput in the proposed approach (QT) is larger than the single path routing and

multipath routing approach. Therefore, the results of the average throughput for all

traffic flow is better in the proposed resource allocation scheme.

106

(a) Packet loss rate of Minimum delay demand flows (b) Packet loss rate of Bandwidth demand flows

(c) Packet loss rate of BE flows

Figure 7.20 The Packet Loss Rate of the Experiment on Abilene Network Topology

Hence, the packet loss rate is also a QoS parameter which is widely used in the

network area, we demonstrated the comparison of the packet loss rate in the two

aforementioned schemes. The packet loss is unavoidable since the total requested

bandwidth of the three types of flows is higher than the maximum available bandwidth

of the links (100 Mbps). According to the results of Figure 7.20(a) (b), the total packet

loss rates for the critical flows which included the minimum delay demand flows and

bandwidth demand flows are clearly zero in the proposed (QT). Therefore, the proposed

allocation scheme can provide better performance in terms of packet loss rate for the

QoS traffics. Moreover, the packet loss rate of the BE traffic is also less than both of

Single Path and Multipath routing.

107

(a) Average Delay of Minimum delay demand flows (b) Average Delay rate of Bandwidth demand flows

(c) Average Delay rate of BE flows

Figure 7.21 Average Delay Rate of the Experiment on Abilene Network Topology

There are many measures to specify different aspects of QoS requirements.

Delay is one of the most important parameters and used to measure the performance of

the network. From the point of application perspective, the delay is very sensitive in

some applications like VoIP and haptic, etc. Since the proposed approach (QT) tries to

meet the delay factor for these types of traffic flows, the delay value will also measure.

Figures 7.21 and 7.22 show the average delays and jitter of the three schemes for

each flow, respectively. Figure 7.21 shows that the delay performance of our proposed

scheme for all the flows is obviously less than both single path and multipath routing

schemes. The comparison of the jitter value is described in Figure 7.22. According to

the results of Figure 7.21 and 7.22, the researcher can conclude that the proposed

approach (QT) provides the low delay variation as the QoS factors for the minimum

delay demand flows.

108

(a) Jitter of Minimum delay demand flows (b) Jitter of Bandwidth demand flows

(c) Average Delay rate of BE flows

Figure 7.22 Jitter of the Experiment on Abilene Network Topology

The focus of this experiment is on providing better service for QoS flows based

on the user demand, by dynamically setting up forwarding paths in the data plane. To

that end, the control program will monitor the status of the network and direct critical

flows over a better path by installing OpenFlow rules on the switches. A QoS routing

module is developed and implemented on the controller.

The performance evaluation shows that the proposed approach (QT) can

significantly improve the throughput and reduce the delay value obtained by the QoS

flows, compared with the shortest path routing and multipath routing used in current

networks. Moreover, the proposed approach (QT) can provide better performance in

terms of packet loss rate for the QoS traffics.

109

7.3.3 Experiment 3: Fat-tree Network Topology

A “fat-tree” network is a tree with hosts at the leaves and increasing capacity

between switches forming the trunk. These trees are useful because they allow an

impressive number of hosts to be connected. It is common to add some diversity of

connections to add robustness. This is the norm of datacenter and campus design, with

parts of the tree often named Core, Aggregation and Access layers. The escalating

bandwidth towards the core makes this design unaffordable for networks that carry a lot

of traffic. Testbed setup is introduced in session 7.3.3.1 and results discussion is

described in the next subsection.

7.3.3.1 Experimental Setup

Figure 7.23 Fat-tree Network Topology

To check the effectiveness of the proposed approach (QT) in the data center

network, fat-tree network topology was built as shown in Figure 7.23 . and made a

performance testing by comparing it with the famous Hedera, the traffic scheduling

approach in data center network. Hence, Hedera can only be used in data center network

topology, the proposed approach (QT) try to support not only datacenter but also various

network topology. The following network traffic flows are generated as shown in Table

7.10 to measure and examine if the proposed approach (QT) can be also used in the

datacenter network.

110

Table 7.10 Network Experiment Flows for Fat-tree Network Topology

Flow

id

Source-

Destination

Type of Demand Packet rate

(pps)

Packet

size (Bps)

Time

(sec.)
Type

1 h1-h9 BE 1000 1024 60 UDP

2 h2-h10 Min-delay VoIP - 60 UDP

3 h3-h11 BE 1000 1024 60 UDP

4 h4-h12 Min-delay 1000 (Haptic) 128 60 UDP

5 h5-h13 Bandwidth demand 1500 1024 60 UDP

6 h6-h14 BE 1000 1024 60 UDP

7 h7-h15 BE 1000 1024 60 UDP

8 h8-h16 Bandwidth demand 1500 1024 60 UDP

At the beginning of the experiments, all the above eight flows, as expressed in

Table 7.10. are generated simultaneously one after another.

7.3.3.2 Evaluation Results

(a) Average Throughput of the QoS flows (b) Average Throughput of BE flows

Figure 7.24 Throughput of the Experiment on Fattree Network Topology

The throughput comparison of the experiment is depicted in Figure 7.24. Figure

7.24 (a) shows that 12% for the flow-id 2 (VoIP), 7% for the flow-id 4 (Haptic), and 57

% for the flow-id 5(video) throughput improvement as compared with Hedera for this

experiment. According to the experiment results, the proposed approach (QT) can

handle all of the generated flows (eight flows) which are come in the simultaneous form.

Hence, Hedera can accept only seven flows in these conditions. This means that the

111

proposed approach (QT) has better link utilization and effective allocation, QT considers

the flow priority and link utilization in flow reroute while Hedera only depends on link

utilization. On the other hand, Figure 7.25 depicts the packet loss rate for this

experiment. The number of packet loss rates in the proposed approach (QT) is obviously

smaller than the Hedera approach. Therefore, the result of the average packet loss rate

of the overall traffic flows is better in the proposed resource allocation scheme.

(a) Packets loss rate of QoS flows (b) Packet loss rate of BE flows

Figure 7.25 Packet Loss Rate of the Experiment on Fattree Network Topology

The average delay for the QoS flows and the BE flows can be seen that in Figure

7.26. According to the graph of Figure 7.26 (a), the proposed approach (QT) has the low

delay value compared with the Hedera for all the QoS traffic flows. However, it can be

seen that there is one of the flow showing the high delay value than the Hedera in BE

flows in Figure 7.26 (b) and this may happen when the traffic are come simultaneously

enter the network, the controller may allocate one or more flows in the same route before

updating the link utilization information.

(a) Average Delay of QoS flows (b) Average Delay rate of BE flows

Figure 7.26 Delay of the Experiment on Fattree Network Topology

112

In recent years there has been an increasingly growing interest in the data center

and cloud computing environment. This is motivated by the need for efficient utilization

of computing resources and reducing costs. Such infrastructure usually hosts various

kinds of applications for different clients. Each application/client has its own set of

requirements, typically defined in their Service Level Agreements (SLAs). Quality-of-

Service (QoS) requirements include end-to-end bandwidth and latency among other

attributes, as we discussed in previous chapters. Several efforts have been made to

address the challenges of providing QoS to various types of network applications in

different environments using various protocols and techniques. QoS provisioning and

monitoring in the cloud-based data center network are even more difficult due to the

complexity of its shared infrastructure environment.

The proposed approach (QT) try to meet the user demand QoS factors of the

flows and confirmed that the required QoS is guaranteed for high priority flows in the

data center network. The experimental results showed that the proposed approach (QT)

has better results than the existing flow scheduling approach, Hedera in terms of

throughput, packet loss rate, and average end-to-end delay.

7.4 Chapter Summary

In this experiment, the end-to-end dynamic bandwidth allocation scheme based

on QoS demand in SDN is presented and confirmed that the QoS is guaranteed for high

priority flows. When multiple flows arrive simultaneously, allocating network flows

over the same link happen due to the periodic flow monitoring. Consequently, the flow

rerouting to the alternative path is essential to provide the QoS performance guarantee.

The congestion handling module in QT used the flow priority to reroute started from the

high priority flows in order to provide high throughput and QoS guarantee. The

experimental results showed that the proposed scheme outperforms the existing single-

path routing, multipath routing and Hedera in terms of throughput, packet loss rate, and

average end-to-end delay.

113

CHAPTER 8

 CONCLUSION AND FUTURE WORK

In this final chapter, all the work in this thesis is concluded in brief and the future

work is explained that may improve the methods of the system in the future study.

8.1 Thesis Summary

This section summarized the research work in the previous chapters in order to

better understanding the proposed system.

Chapter 1 is the preamble of the research work. In Chapter 1, a brief background

theory related to the SDN is introduced and listed the research problems firstly. Then,

research motivations of the thesis that lead to the necessity of the research work are

explained. Finally, the objectives and contributions of the proposed system which are a

significant part of the thesis are presented.

Chapter 2 summarizes some fundamental research works in the major areas

relating to the resourced allocation as well as QoS and the traffic engineering solutions

in SDN environments.

In the next chapter, Chapter 3 is about the theoretical background of the proposed

system. It initially outlines the SDN reference architecture and its backend theory and

technology. This chapter helps the reader to a better understanding of the SDN

environment and its workflows.

Chapter 4 presents the end-to-end QoS from the origin of the IP-network start to

a current SDN environment. The goal of this chapter is to integrate the theory findings

across SND, TE, QoS and resource allocation approaches.

Chapter 5 covers the proposed end-to-end dynamic bandwidth resource

allocation and a detailed explanation of its components. The chapter begins with the

comprehensive descriptions of the system architecture for the proposed resource

allocation scheme and its components are discussed.

In Chapter 6, the conceptual design of the proposed system and its

implementation are presented. Then, the explanation of detail design requirements are

discussed.

114

Chapter 7 presents the various experiments with the examples of network

topologies to give the reader an understanding of how the platform operates. In this

chapter, the bandwidth guaranteeing system with OpenFlow protocol is initially

explored by using software switches namely CPqD and OVS. After that, the prototype

implementation and the demonstration of the proposed system in different network

topology is presented. Then, the analysis of the proposed system and evaluation results

are discussed.

8.2 Conclusion

With global Internet traffic growing by an estimated 22% per year, the demand

for bandwidth is fast outstripping providers' best efforts to supply it. Providing higher

bandwidth is just not enough because that involves a higher cost which both the

providers and the consumers cannot afford. Therefore, to handle the issue with limited

costs, the best we can do is control the bandwidth with which the data are being sent

from the source to the desired destination. The network administrator can eliminate the

paths that have lower bandwidth (bottleneck) and select a path with the highest

bottleneck bandwidth using an existing algorithm. Identifying network bottlenecks is

very useful for end-users and service providers. Unfortunately, it is very hard to identify

the location of bottlenecks unless one has access to link load information for all the

relevant links.

Moreover, a number of today’s network applications such as media streaming

and cloud services require steady network resources with strict Quality of Service (QoS)

requirements. In general, network administrators are able to manage their resources

more efficiently without provisioning the network successively by using the QoS control

mechanism and the related notion of traffic engineering. It is not easy to make sure that

efficient bandwidth allocation is done in order to provide high QoS for each data flow.

If congestion occurs in a network, packets are simply dropped instead of being buffered

or sent out after idle periods. There is no bandwidth guarantee about flows and their

rates without QoS control. A network administrator can implement the traffic policing

where flows can only influence each other based on predetermined parameters with the

help of a QoS control mechanism. Moreover, the QoS requirement and importance may

vary according to service type, price and user’s requirement. Also, the QoS provisioning

mechanism of a network depends on the user’s requirement, availability of resources,

115

price, service types etc. Providing high QoS in existing network architectures is a long-

standing and still open issue in the networking area.

The emerging networking technology, SDN is introduced to address this issue

efficiently for modern network architectures like 5G. In SDN, OpenFlow provides flow

level programmability to program the network according to QoS requirements of the

applications. Since SDN and OpenFlow enable networks to be more controllable and

intelligent with the help of programmability, network administrators no longer have to

leave networks unmanaged. Currently, OpenFlow is supported for QoS in the SDN

environment by two features, namely the queue and meter. A queue is an egress packet

queuing mechanism in the OpenFlow switch port. Although OpenFlow supports the

queue features, it does not handle queue management; it is just able to query queue

statistics from the switch. Therefore, the queuing feature of OpenFlow is a property of

a switch port [71].

In any given network, usually, the overall bandwidth is competitively shared

among various application traffic. According to the traditional single-path routing

scheme, all of the traffic share the same link and compete over the network link

bandwidth. Congestion happens when the traffic load exceeds the network link

bandwidth. If congestion occurs in the network, the network will face the packet loss.

When the packet loss exists on the network, the users will experience large delays and

service degradation. However, there may be more than one single path to reach a

particular destination, and some paths may be underutilized. Suitable path selection from

among the multiple paths to optimize the overall network performance is one of the

critical issues in the network area. Another major challenge is the dynamic link

bandwidth allocation with congestion management that can support the QoS

requirements for each traffic and alleviate the service degradation for high priority

flows.

To solve these problems, an end-to-end dynamic bandwidth resource allocation

scheme based on QoS demand is proposed in SDN to support the QoS requirements for

an individual flow. SDN is an emerging architecture that may play a critical role in future

network architectures. SDN can provide a global network view of the network resources

and their performance indicators such as link utilization and the network congestion

level which can be used in network resource allocation. By using the benefits of SDN,

116

the controller makes the routing decision based on the global view of the network

resources in an SDN network.

 In the proposed QT, the flow priority and the dynamic characteristics of the

network link are considered in order to provide the high QoS performance for high

priority flows. In addition, we calculate feasible paths for all the traffics that can satisfy

the user bandwidth demands. In order to mitigate the flow performance degradation and

congestion, the controller checks the link bandwidths by reserving the required

bandwidths for incoming flows. If the link bandwidth is smaller than the predefined

threshold value, the bottleneck link will be defined and the highest priority flow from

the bottleneck link will be rerouted to an alternative one that has enough bandwidth for

the rerouting flow. Furthermore, to improve the performance and to ensure the QoS of

the high priority flows, a queue mechanism provided by the OpenFlow at the data link

level is used. The goal is to improve the QoS performance of the high priority flows

while providing the required bandwidth resources and less packet loss rate as QoS

factors in the overall network.

According to our preliminary experiments, the OpenFlow Queueing mechanism

improves the QoS by providing a bandwidth guarantee for the high priority traffic is

confirmed. Therfore, the fundamental work of the proposed approach (QT) in simple

network topology is evaluated by using the queuing mechanism in our experiment 1

(section 7.3.1). From this experiment, we can observe that the proposed approach (QT)

works well and provides better performance in terms of packet loss rate for the QoS

flows. Later, the performance of the QoS routing with large network topology is

evaluated in our experiment 2 (section 7.3.2). In this experiment 2, we analyse the

network monitoring interval to query the statistics of the network from the switches.

Accoding to our experiment, we suggested that the three seconds interval is the suitable

choice for our testing with Abilene Network Topology. We found that the accuracy may

largely vary based on how frequently the controller is polling the switches to get the

network statistics and how dynamically the network traffic is changing. In experiment

3 (section 7.3.3), we compare with Hedera approach, the most popular flow allocation

approach in the data center network. According to the experiment 3 (section 7.3.3) , the

proposed QT outperforms 12% for the flow-id 2 (VoIP), 7% for the flow-id 4 (Haptic),

and 57 % for the flow-id 5(video) in the throughput performance than Hedera. The

proposed QT considers the flow priority and link utilization in flow rerouting whereas

117

Hedera only depends on link utilization. Due to the evaluation reults, the proposed QT

has better link utilization and effective allocation compare with Hedera approach and

provide better performance for all QoS flows.

8.3 Limitations and Future Work

The resource allocation proposed in this thesis has used traffic engineering and

predicted network states for routing decisions. Currently, the proposed system doesn’t

provide capabilities for queue management due to the controller can only query some

queue statistic and limited configuration parameters through the OpenFlow protocol.

The trade-off between measurement overhead and real-time statistics should be

carefully considered since the network is measured actively in every ‘n’ seconds to get

the real-time update measurement result. Moreover, the LLDP protocol that the

proposed system used to estimate the network dealy is not suitable for a large network.

There we need to find a more suitable way to estimate the link delay for a large network.

For the future work, more realistic techniques such as effective queue scheduling

in the data plane and apply a metering feature of the OpenFlow protocol in the control

plane should be implemented and investigated. The application-aware approach should

be studied to allocate the bandwidth automatically by estimating the amount of the

bandwidth resources that the flow requires in real-time. It should, therefore, be

combined with admission control to protect the network from severe overload and end-

to-end flow control to achieve fairness. Furthermore, since different services are

sensitive with respect to different QoS measures, a combined metric for route

optimization should be investigated. There will be a plan to explore additional traffic

engineering (TE) methods to ensure the QoS guarantee as well as larger platforms for

the approach.

118

AUTHOR’S PUBLICATIONS

[1] Nwe Thazin, Khine Moe Nwe, “Efficient Resource Allocation Framework for

Network Function Virtualization” , in Proceedings of the 15th International

Conference on Computer Applications (ICCA 2017), Yangon, MYANMAR,

February 2017. Page [112-116]

[2] Nwe Thazin, Khine Moe Nwe, Yutaka Ishibashi, “Resource Allocation

Scheme for SDN-Based Cloud Data Center Network” , in Proceedings of the

17th International Conference on Computer Applications (ICCA 2019),

Yangon, MYANMAR, February 2019. Page [15-22]

[3] Nwe Thazin, Khine Moe Nwe, Yutaka Ishibashi, “End-to-End Dynamic

Bandwidth Resource Allocation Based on QoS Demand in SDN”, in

Proceedings of the 25th Asia-Pacific Conference on Communications

(APCC), Ho Chi Min, Vietnam, November 2019. Page [244-249]

[4] Nwe Thazin, Khine Moe Nwe, “Quality of Service (QoS)-Based Network

Resource Allocation in Software Defined Networking (SDN)”, International

Journal of Sciences: Basic and Applied Research Journals (IJSBAR), ISSN:

2307-4531 [Online], January 2020. (To be appeared).

119

BIBLIOGRAPHY

[1] S. Agarwal, M. Kodialam, and T. Lakshman, “Traffic engineering in software

defined networks,” in Proceedings of the 32nd IEEE International Conference

on Computer Communications (INFOCOM). IEEE, pp. 2211-2219, 2013.

[2] U. Agarwal and V. Gupta, “Network Routing Algorithm using Genetic

Algorithm and Compare with Route Guidance Algorithm,” Int. J. Sci. Res.

Eng. Technol., pp. 3-4, 2014.

[3] A. V. Akella and K. Xiong, “Quality of service (QoS)-guaranteed network

resource allocation via software defined networking (SDN),” in Proc. IEEE

12th Int. Conf. Dependable, Autonomic Secure Comput. (DASC), pp. 7-13,

Aug. 2014.

[4] I. Akyilidiz, A. Lee, P.Wang, M. Luo and W. Chou,”A roadmap for traffic

engineering in SDN -OpenFlow networks”, Computer Networks 71,pp. 1-30,

Elsevier Publications, 2014

[5] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,

“Hedera: Dynamic flow scheduling for data center networks,” in Proc. Netw.

Syst. Design Implement. Symp. (NSDI), Vol. 10., pp. 19, 2010.

[6] A. Alijawad, P. Shah, O. Gemikonakli, and R. Trestian. “Policy-based QoS

management framework for software-defined networks.” In 2018

International Symposium on Networks, Computers and Communications

(ISNCC), pp. 1-6, IEEE, 2018.

[7] S. Avallone, S. Guadagno, D. Emma, A. Pescapè, and G. Ventre, “D-ITG

distributed internet traffic generator,” In Proceeding of 1st International

Conference on Quantitative Evaluation of System (QEST). IEEE, pp. 316-

317, Jan. 2004.

[8] S. U. Baek, C. H. Park, E. Kim and D. Shin, “Implementation and verification

of QoS priority over software-defined networking,” In Proceeding of the

International Conference on Internet Computing (ICOMP). The Steering

Committee of the World Congress in Computer Science, Computer

Engineering and Applied Computing (WorldComp), 2016.

[9] D. G. Balan and D. A. Potorac, “Linux HTB queuing discipline

implementations,”IEEE First International Conference on Networked Digital

Technologies, Ostrava, Czech Republic, pp. 122-126, Jul. 2009.

120

[10] H.Ballani, P.Costa, T.Karagiannis, and A.Rowstron, “Towards predictable

datacenter networks”. SIGCOMM Comput. Commun. Rev. Volume 41, Issue

4, pp. 242-253, Aug. 2011.

[11] T. Benson, A. Anand, A. Akella, and M. Zhang, “MicroTE: Fine grained

traffic engineering for data centers,” in Proc. 7th Conf. Emerg. Netw.

Experim. Technol. (CoNEXT), pp. 1-12, Dec. 2011.

[12] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss. “An

Architecture for Differentiated Services. RFC 2475 (Informational).”

Updated by RFC 3260. Internet Engineering Task Force, 1998. url:

http://www.ietf.org/rfc/rfc2475.txt.

[13] J.M.Boley, E.S. Jung, and R.Kettimuthu, “Adaptive QoS for data transfers

using software-defined networking.” 2016 IEEE International Conference on

Advanced Networks and Telecommunications Systems (ANTS), IEEE, pp. 1-

6, 2016.

[14] R. Braden, D. Clark, and S. Shenker. “Integrated Services in the Internet

Architecture: an Overview. RFC 1633 (Informational).” Internet Engineering

Task Force, 1994. url:http://www.ietf.org/rfc/rfc1633.txt.

[15] K.L. Calvert, W.K. Edwards, N. Feamster, R.E. Grinter, Y. Deng, and X.

Zhou, “Instrumenting home networks.” ACM SIGCOMM Computer

Communication Review, Vol. 41, Issue. 1, pp. 84-89, 2011.

[16] D. D. Chowdhury, “Forces: an Elastic Routing Architecture for,” no. August,

2016.

[17] A. R. Curtis, W. Kim, and P. Yalagandula, “Mahout: Low-overhead

datacenter traffic management using end-host-based elephant detection,” in

Proc. IEEE INFOCOMM, pp. 1629-1637, Apr. 2011.

[18] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and S.

Banerjee, “DevoFlow: Scaling flow management for high-performance

networks,” ACM SIGCOMM Comput. Commun. Rev., Vol. 41, no. 4, pp.

254-265, 2011.

[19] A. Dainotti, A. Pescap ́e, and C. Sansone, “Early Classification of Network

Traffic through Multi classification”. In: Domingo-Pascual, J., Shavitt, Y.,

Uhlig, S. (eds.) TMA 2011. LNCS, vol. 6613, pp. 122-135. Springer,

Heidelberg 2011.

121

[20] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist

multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput.,

vol. 6, no. 2, pp. 182-197, 2002.

[21] M. Dillon, T. Winters, “Virtualization of Home Network Gateways,” in

Computer, vol.47, no.11, pp.62-65, Nov. 2014

[22] H.E. Egilmez, “Distributed QoS Architectures for Multimedia Streaming

over Software Defined Networks,” Multimedia, IEEE Transactions on,

vol.16, no.6, pp.1597-1609, Oct. 2014.

[23] H. E. Egilmez, S. T. Dane, K. T. Bagci, and A. M. Tekalp, “OpenQoS: An

OpenFlow controller design for multimedia delivery with end-to-end quality

of service over software-defined networks,” in Proc. Signal Inf. Process.

Assoc. Summit Conf., pp. 1-8, Dec. 2012.

[24] S. Fang, Y. Yu, C. H. Foh, and K. M. M. Aung, “A loss-free multipathing

solution for data center network using software-defined networking

approach,” in APMRC, 2012 Digest , pp.1-8, Oct. 31 2012-Nov. 2 2012.

[25] N. Feamster, “ Outsourcing home network security,” in Proceedings of the

2010 ACM SIGCOMM workshop on Home networks, pp. 37-42. ACM,

2010.

[26] W. C. Feng, K. G. Shin, D. D. Kandlur, and D. Saha, “The Blue active queue

management algorithms,” IEEE/ACM Trans. Netw., vol. 10, no. 4, pp. 513-

528, 2002

[27] Roy T. Fielding (2000). “Chapter 5: Representational State Transfer (RE

ST)”. Architectural Styles and the Design of Network-based Software

Architectures (Ph.D.). University of California, Irvine.

[28] M. Gerla and L. Kleinrock, “Flow Control: A Comparative Survey,” IEEE

Trans. Commun., vol. 28, no. 4, 1980.

[29] P. Goransson, and B. Chuck. “Software-Defined Networks A Comprehensive

Approach.” In IEEE Communication Surveys & Tutorials, pp. 7-17, 2014.

[30] K. Greene, (2009), “TR10: Software-defined networking. MIT Technology

Review, March/April 2009” http://www2.technologyreview.com/article/

412194 /tr10-software-defined-networking/

[31] Z. J. Haas and J. H. Winters, “Congestion Control By Adaptive Admission,”

Proc. IEEE Int. Conf. Comput. Commun., pp. 560-569, 1991.

122

[32] B. Heller, R. Sherwood, N. Mckeown, The controller placement problem, 420

Acm Sigcomm Computer Communication Review, vol. 42, issue 4, pp. 7-12,

2012.

[33] S. S. Hong and S. F. Wu, “On interactive Internet traffic replay,” Lect. Notes

Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes

Bioinformatics), vol. 3858 LNCS, pp. 247-264, 2006.

[34] X. Huang, C. Lin, F. Ren, G. Yang, P. D. Ungsunan, and Y. Wang,

“Improving the convergence and stability of congestion control algorithm,”

in Proceedings -International Conference on Network Protocols, ICNP, pp.

206-215, 2007.

[35] M. Jarschel, F. Wamser, T. Hohn, T. Zinner and P. Tran -Gia, “ SDN-Based

Application-Aware Networking on the Example of YouTube Video

Streaming,” In the Proceedings of the Second European Workshop on

Software Defined Networks (EWSDN), pp. 87-92, Berlin, Germany, Oct.

2013.

[36] V. Jeyakumar, A. Kabbani, J. C. Mogul, and A. Vahdat, “Flexible Network

Bandwidth and Latency Provisioning in the Datacenter,” 2014. Available

Online: http:// http://arxiv.org/abs/1405.0631

[37] P. Jha, “End-to-end Quality-of-Service in Software Defined Networking” by

University of Dublin, Trinity College,” no. September, thesis, 2017.

[38] J. Jo, S. Lee and J. W. Kim, “Software-defined home networking devices for

multi-home visual sharing,” in IEEE Transactions on Consumer Electronics,

vol. 60, no. 3, pp. 534-539, Aug. 2014. doi: 10.1109/TCE.2014.6937340

[39] M. Karakus and A. Durresi, “Quality of Service (QoS) in Software Defined

Networking (SDN): A survey,” J. Netw. Comput. Appl., vol. 80, pp. 200-218,

2017.

[40] H. Krishna, N. L. M van Adrichem, and F. A. Kuipers, “ Providing bandwidth

guarantees with OpenFlow,” in Proc. of IEEE 2016 Symposium on

Communications and Vehicular Technologies (SCVT), pp. 1-6, 2016

[41] J. Kristoff, “TCP Congestion Control,” 2002.

[42] A.Kumar, S.Jain, et al., “BwE: Flexible, Hierarchical Bandwidth Allocation

for WAN Distributed Computing,” in proceedings of the 2015 ACM

123

Conference on Special Interest Group on Data Communication (SIGCOMM

'15). ACM, New York, NY, USA, 1-14.

[43] Y. Lee et.al, “ALTO Extension for collecting data center resource in real -

time”, http://datatraceker.ietf-org/doc/draft-lee-alto-ext-dc-resource/

[44] L.E. Li, Z.M. Mao, and J. Rexford. Toward software-defined cellular

networks. In Software Defined Networking (EWSDN), 2012 European

Workshop on, pp. 7-12, 2012.

[45] F. Li, J. Cao, X. Wang, Y. Sun and Y. Sahni, “Enabling Software Defined

Networking with QoS Guarantee for Cloud Applications,” 2017 IEEE 10th

International Conference on Cloud Computing (CLOUD), Honolulu, CA,

2017, pp. 130-137.doi: 10.1109/CLOUD.2017.25

[46] S. Li et al., “Protocol Oblivious Forwarding (POF): Software-Defined

Networking with Enhanced Programmability,” in IEEE Network, vol. 31, no.

2, pp. 58-66, March/April 2017.doi: 10.1109/MNET.2017.1600030NM

[47] V. Mann, A. Vishnoi and S. Bidkar, “Living on the edge: Monitoring network

flows at the edge in cloud data centers,” 2013 Fifth International Conference

on Communication Systems and Networks (COMSNETS), Bangalore, pp. 1-

9, 2013.

[48] C. A. C. Marcondes, T. P. C. Santos, A. P. Godoy, C. C. Viel and C. A. C.

Teixeira, “ CastFlow: Clean-slate multicast approach using in-advance path

processing in programmable networks,” Computers and Communications

(ISCC), 2012 IEEE Symposium on, Cappadocia, pp. 000094-000101, 2012.

[49] S. Mehdi, J. Khalid, and S. Khayam. Revisiting traffic anomaly detection

using software defined networking. In Recent Advances in Intrusion

Detection, pp. 161-180. Springer, 2011.

[50] H. Mekky, F.Hao, S.Mukherjee, Z.Zhang, and T.V. Lakshman. 2014.

Application-aware data plane processing in SDN. In Proceedings of the third

workshop on Hot topics in software defined networking (HotSDN '14). ACM,

New York, NY, USA, pp.13-18, 2014.

[51] J. Metzler, “Understanding Software-Defined Networks,” Information Week

Reports, pp.1-25, http://reports.informationweek.com/abstract/6/9044/Data-

Center/research-understanding-softwaredefined-networks.html,October

2012.

124

[52] R. Mortier, T. Rodden, T. Lodge, D. McAuley, C. Rotsos, AW Moore, A.

Koliousis, and J. Sventek. Control and understanding: Owning your home

network. In Communication Systems and Networks (COMSNETS), 2012

Fourth International Conference on, pp. 1-10. IEEE, 2012.

[53] S. Natarajan, A. Ramaiah, and M. Mathen, “A software defined cloud

gateway automation system using OpenFlow,” in Proc. IEEE 2nd Int. Conf.

CloudNet, pp. 219-226, Nov. 2013.

[54] K. A. Noghani and M. O. Sunay, “Streaming Multicast Video over Software

-Defined Networks,” 2014 IEEE 11th International Conference on Mobile Ad

Hoc and Sensor Systems, Philadelphia, PA, pp. 551 -556, 2014.

[55] D. Palma et al., “The QueuePusher: Enabling Queue Management in

OpenFlow,” 2014 Third European Workshop on Software Defined Networks,

London, pp. 125-126, 2014. doi: 10.1109/EWSDN.2014.34

[56] P. Panwaree, K. Jongwon and C. Aswakul, “Packet Delay and Loss

Performance of Streaming Video over Emulated and Real OpenFlow

Networks,” Conference: Proceedings of the 29th International Technical

Conference on Circuit/Systems Computers and Communications (ITC-

CSCC), 2014, At Phuket, Thailand

[57] P. Patel et al., “Ananta: Cloud scale load balancing,” in Proc. ACM

SIGCOMM Conf., pp. 207-218, 2013.

[58] E. Rosen, A. Viswanathan, R. Callon, RFC 3031 : Multiprotocol Label

Switching Architecture (2001). URL www.ietf.org/rfc/rfc3031.txt

[59] Y. Sharma, S. C. Saini, and M. Bhandhari, “Comparison of Dijkstra ’ s

Shortest Path Algorithm with Genetic Algorithm for Static and Dynamic

Routing Network,” Int. J. Electron. Comput. Sci. Eng., vol. 1, no. 2, pp. 416-

425, 2012.

[60] S. Shenker, “A Theoretical Analysis of Feedback Flow Control,” in The

Conference on Communications Architecture and Protocols (SIGCOMM),

1990, pp. 156-165.

[61] Y. Shi, Y. Zhang et al. “Using Machine Learning to Provide Reliable

Differentiated Services for IoT in SDN-Like Publish/Subscribe Middleware.”

Sensors (Basel, Switzerland) vol. 19,6 1449. 25 Mar. 2019, pp. 1-25.

125

[62] Z. Shu et al., “Traffic Engineering in Software-Defined Networking:

Measurement and Management,” IEEE Access, vol. 4, no. August 2018, pp.

3246-3256, 2016.

[63] I. Stoica, H. Zhang and T. S. E. Ng, “A hierarchical fair service curve

algorithm for link-sharing, real-time, and priority services,” in IEEE/ACM

Transactions on Networking, vol. 8, no. 2, pp. 185-199, Apr. 2000.

[64] A.Takacs, E. Bellagamba and J. Wilke, “ Software-defined networking: The

service provider perspective,” in Ericsson Review , Feb. 2013.

[65] S. Tomovic, N. Prasad, and I. Radusinovic, “SDN control framework for QoS

provisioning,” in Proc. Telecommun. Forum Telfor (TELFOR), pp. 111-114,

Nov. 2014,

[66] A. Tootoonchian, M. Ghobadi, and Y. Ganjali, “ OpenTM: Traffic matrix

estimator for OpenFlow networks,” in Passive and Active Measurement.

Berlin, Germany: Springer, pp. 201-210, Apr. 2010.

[67] R. Trivisonno, R. Guerzoni, I. Vaishnavi, and A. Frimpong, “ Network

Resource Management and QoS in SDN-Enabled 5G Systems,” 2015 IEEE

Global Communications Conference (GLOBECOM), San Diego, CA, pp. 1-

7, 2015.

[68] J.T. Tsai, J.C. Fang, and J.H. Chou, “Optimized task scheduling and resource

allocation on cloud computing environment using improved differential

evolution algorithm,” Comput. Oper. Res., vol. 40, no. 12, pp. 3045-3055,

2013.

[69] F. P. Tso and D. Pezaros, “Baatdaat: Measurement-Based Flow Scheduling

for Cloud Data Centers,” in Proceedings of the 2013 IEEE Symposium on

Computers and Communications (ISCC), pp. 765-770 , July 2013.

[70] N. L. M. van Adrichem, C. Doerr, and F. A. Kuipers, ``OpenNetMon:

Network monitoring in OpenFlow software-defined networks,”in Proc.

IEEE/IFIP Netw. Oper. Manage. Symp., pp. 1-8, May 2014.

[71] S. J. Vaughan-Nichols, “ OpenFlow: The next generation of the network ?,”

IEEE Computer 44 (8) (2011) 13-15. URL http://dblp.unitrier.de/db/jo-

urnals/ computer /computer44.html#Vaughan-Nichols11

126

[72] R. Wallner and R. Cannistra, “An SDN Approach: Quality of Service using

Big Switch’s Floodlight Open-source Controller,” Proc. Asia-Pacific Adv.

Netw., vol. 35, no. 0, pp. 14, 2013.

[73] C. Xu, B. Chen, H. Qian, Quality of service guaranteed resource management

dynamically in software defined network, in: Journal of Communications,

vol. 10, pp. 843-850, 2015. doi:10.12720/jcm.10.11.843-850.

[74] R. Yavatkar, D. Hoffman, Y. Bernet, F. Baker and M. Speer, “SBM (Subnet

Bandwidth Manager): A Protocol for RSVP-based Admission Control over

IEEE 802-style networks.” RFC 2814 (2000): 1-60.

[75] Y. Yiakoumis, K.K.Yap, S. Katti , G. Parulkar, and N. McKeown, “Slicing

home networks,” in Proceedings of the 2nd ACM SIGCOMM workshop on

Home networks (HomeNets '11). ACM, New York, NY, USA, pp. 1-6, 2011.

[76] C. Yu, C. Lumezanu, Y. Zhang, V. Singh, G. Jiang, and H. V. Madhyastha,

“FlowSense: Monitoring network utilization with zero measurement cost,” in

Proc. Int. Conf. Passive Active Meas., vol. 1. pp. 31-41, 2013.

[77] H. Zhang, X. Guo, J. Yan, B. Liu and Q. Shuai, “SDN-based ECMP algorithm

for data center networks,” 2014 IEEE Computers, Communications and IT

Applications Conference, Beijing, pp. 13-18, 2014.

[78] G. Zhang, D. Zhang, L. Zhou, and X. Liu. “End-to-end dynamic bandwidth

allocation based on user in software-defined networks.” International Journal

of Future Generation Communication and Networking 9, no. 9, pp. 67-76,

2016.

[79] L. Zhang, S. Berson, S. Herzog, S. Jamin, RFC 2205, “Resource ReSerVation

Protocol (RSVP) - Version 1 Functional Specification (1997)”. URL

www.ietf.org/rfc/rfc2205.txt

[80] C. Zhang, X. Huang, G. Ma and X. Han, “A dynamic scheduling algorithm

for bandwidth reservation requests in software-defined networks,” 2015 10th

International Conference on Information, Communications and Signal

Processing (ICICS), Singapore, pp. 1-5, 2015.

[81] “Internet Engineering Task Force.” [Online]. Available: http://www.ietf.org/.

[82] “Iperf”, Abailable: http://iperf.sourceforge.net.

[83] “Open Networking Foundation,” accessed: 2016-05-25. [Online]. Available:

https://www.opennetworking.org/

127

[84] “Open Networking Foundation,” accessed: 2016-05-25. [Online]. Available:

https://www.opennetworking.org/

[85] “OpenFlow Switch Specification”. [Online]. Available: https://www.open-

networking.org/wp-content/uploads/.../ OpenFlow-spec-v1.3.1.pdf.

(accessed August 1, 2015).

[86] “CiscoVirtualized Multiservice Data Center Framework, 2016.” [Online].

Available: http://www.cisco.com/enterprise/data-center-designs-cloud-com-

puting/white_paper_c11-714729.html

[87] “Mininet: An Instant Virtual Network on your Laptop”. [Online]. Available:

http://mininet.org/.

[88] O. N. Foundation, “OpenFlow-open networking foundation” [Online].

Available:https://www.opennetworking.org/sdn-resources/openflow

(accessed August 23, 2016).

[89] “ofsoftswitch13 – cpqd”. https://github.com/CPqD/ofsoftswitch13

[90] “ONOS project”. http://onosproject.org/

[91] Onos thesis(2017) - End-to-End Quality of Service in Software Defined

Networking.pdf

[92] Open Networking Foundation, “Software-Defined Networking: The new

norm for networks,” Tech. Rep., 2012, white paper

[93] “Open vSwitch”. [Online]. Available: http://openvswitch.org/support/

[94] “Project FloodLight”. [Online]. Available: http://www.projectfloodlight.org

/floodlight/

[95] “Project OpenDayLight”. [Online]. Available: http://www.opendaylight.org/

project/

[96] “Ryu”. [Online]. Available: http://osrg.github.com/ryu/

[97] SDN Architecture (2014), Issue 1, “Open Networking Foundation”. [Online].

Available: https://www.opennetworking.org/images/stories/downloads/sdn-

resources/technicalreports/TR_SDN_ARCH_1.0_06062014.pdf

[98] “Wireshark”. [Online]. Available: https://www.wireshark.org/

[99] https://blog.sflow.com/

[100] https://tcpreplay.appneta.com/

[101] https://tubularinsights.com/2019-internet-video-traffic/

[102] https://wiki.opendaylight.org/view/OpFlex:Opflex_Architecture

128

[103] https://www.airtel.in/opennetwork/reportIssues

[104] https://www.cisco.com/c/en/us/products/ios-nx-os-software/quality-of-

service-qos/index.html

[105] https://www.pcwdld.com/what-is-netflow

